| 研究生: |
宋威翰 Song, Wei-Han |
|---|---|
| 論文名稱: |
一個應用於多通道類比前端神經紀錄系統的逐漸趨近與壓控震盪器混合式類比數位轉換器 A VCO-SAR Hybrid ADC for Multi-channel Analog Front-end Neural Recording System |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 逐漸趨近式類比數位轉換器 、壓控震盪器 、粗-細混合式類比數位轉換器 |
| 外文關鍵詞: | Successive approximation register ADC (SAR ADC), voltage-controlled oscillator (VCO), coarse-fine hybrid ADC |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個應用於多通道神經紀錄系統的逐漸趨近與壓控震盪器混合式類比數位轉換器。配合實驗室的計畫預計做八通道前端類比感測電路來偵測神經訊號,本論文所提出的類比數位轉換器的規格為操作在160kS/s的取樣頻率且解析度需為10位元,混合式(Hybrid)架構結合了SAR ADC與VCO-based ADC,前者與後者分別為粗略與精細量化器,兩者比例為7:3,在VCO-based ADC的設計上,採用前饋交叉耦合、數餘數、Johnson counter等技術以降低其功率消耗,與傳統架構比較後,使用這些技術可以使VCO-based ADC的功耗的節省66.83%。另外,在震盪頻率的範圍上留有邊界,預防因雜訊與不匹配所造成的輸入殘值電壓偏移影響輸出結果,提升電路的可靠度。相比於使用單純10位元的SAR ADC,使用混合式架構可以讓電容陣列的大小減少8倍,等效於每通道的前端放大器功率消耗降低8倍,所以使用所提出之Hybrid ADC可以大大降低系統的功率消耗。
本論文使用了TSMC 0.18μm 1P6M的製程來實現晶片,量測結果如下 : SNDR為56.55 dB,FoM為0.1753 pJ/conv.,DNL與INL分別-0.577 / +0.594 LSB與-0.951 / +0.956 LSB,功率消耗則為15.238 μW。
This paper presents a hybrid analog-to-digital converter (ADC) combining successive approximation registers (SAR) with a voltage-controlled ring oscillator (VCO) for multi-channel neural recording. The proposed coarse-fine architecture can reduce the input capacitor load of the multi-channel analog front-end (AFE), which is beneficial for low-power design in a system overview. In the design of the VCO-based ADC, techniques such as feedforward cross-coupling, count remainder, and Johnson counter are used to reduce power consumption. Comparing with the traditional architecture, the utilization of these techniques can result in a power saving of 66.83% for the VCO-based ADC. In addition, the oscillation frequency range is set with a margin to avoid the impact of input residue voltage drift caused by noise and mismatch on the output results, enhancing the reliability of the circuit. Measurement results show that the proposed hybrid VCO-SAR ADC operating at 160-kS/s can achieve a signal-to-noise and distortion ratio (SNDR) of 56.55 dB while consuming 15.24 μW under 1.4/0.8 V supply, where the capacitor array is much less than a pure 10-bit SAR ADC to further ease the requirement of driving ability to the multi-channel AFEs.
[1] W.-M. Chen et al., “A fully integrated 8-channel closed-loop neural prosthetic CMOS SoC for real-time epileptic seizure control,” in IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 232-247, Jan. 2014.
[2] H. Kassiri et al., “27.3 All-wireless 64-channel 0.013 mm 2/ch closed-loop neurostimulator with rail-to-rail DC offset removal,” IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 452-453.
[3] X. Tong and J. Wang, “A 1 V 10 bit 25 kS/s VCO-based ADC for implantable neural recording,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017, pp. 1-4.
[4] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available:
http://web.stanford.edu/~murmann/adcsurvey.html.
[5] S. Tao, and A. Rusu, “A Power-Efficient Continuous-Time Incremental Sigma-Delta ADC for Neural Recording Systems” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 6, June 2015.
[6] C. Lee et al., “A 6.5-μW 10-kHz BW 80.4- dB SNDR Gm-C-based CT ∆∑ modulator with a feedback-assisted Gm linearization for artifact-tolerant neural recording,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2889-2901, Nov. 2020.
[7] B. Razavi, “The StrongARM latch [A circuit for all seasons],” in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015.
[8] T. Kobayashi, K. Nogami, T. Shirotori and Y. Fujimoto, “A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture” in IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523-527, April 1993.
[9] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, “Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier” in IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
[10] A. Nikoozadeh, and B. Murmann “An Analysis of Latch Comparator Offset Due to Load Capacitor Mismatch” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no.12, pp.1398-1402, Dec. 2006.
[11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s” in IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.
[12] J. Kim, T. K. Jang, Y. G. Yoon, and S. H. Cho, “Analysis and design of voltage controlled oscillator based analog-to-digital converter,” in IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 57, no. 1, pp. 18-30, Jan. 2010.
[13] A. K. Gupta, K. Nagaraj, and T. R. Viswanathan, “A Two-Stage ADC Architecture With VCO-Based Second Stage” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 11, pp. 734-738, Nov. 2011.
[14] W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare and D. Marković, "A ±50-mV Linear-Input-Range VCO-Based Neural-Recording Front-End With Digital Nonlinearity Correction," in IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 173-184, Jan. 2017.
[15] J. Kim and S. Cho, “A time-based analog-to-digital converter using a multi-phase VCO,” IEEE International Symposium on Circuits and Systems (ISCAS), 2006, pp. 3934–3937.
[16] J. Daniels, W. Dehaene, and M. Steyaert, “All-digital differential VCO-based A/D conversion,” in Proc. IEEE International Symposium on Circuits and Systems, 2010, pp. 1085-1088.
[17] G. G. E. Gielen, L. Hernandez, and P. Rombouts, “Time-encoding analog-to-digital converters: Bridging the analog gap to advanced digital CMOS—Part 1: Basic principles,” in IEEE Solid-State Circuits Magazine, vol. 12, no. 2, pp. 47-55, Spring 2020.
[18] G. G. E. Gielen, L. Hernandez, and P. Rombouts, “Time-encoding analog-to-digital converters: Bridging the analog gap to advanced digital CMOS—Part 2: Basic principles,” in IEEE Solid-State Circuits Magazine, vol. 12, no. 3, pp. 18-27, Aug. 2020.
[19] Y. Xie, Y. Liang, M. Liu, S. Liu, and Z. Zhu, “A 10-Bit 5 MS/s VCO-SAR ADC in 0.18-μm CMOS,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 26-30, Jan. 2019.
[20] M. Baert and W. Dehaene, “A 5-GS/s 7.2-ENOB Time-Interleaved VCO-Based ADC Achieving 30.5 fJ/cs,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1577-1587, June 2020.
[21] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter” in IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[22] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Ying-Zu Lin,” A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[23] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012.
[24] I. -F. Sun, J. Yin, P. -I. Mak and R. P. Martins, "A Comparative Study of 8-Phase Feedforward-Coupling Ring VCOs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 4, pp. 527-531, April 2019.
[25] S. M. Ismail, A. B. M. S. Rahman and F. T. Islam, "Low power design of Johnson Counter using clock gating," 15th International Conference on Computer and Information Technology (ICCIT), 2012, pp.510-517.
[26] C. Perez, A. Quintero, P. Amaral, A. Wiesbauer, and L. Hernandez, “A 73dB-A Audio VCO-ADC Based on a Maximum Length Sequence Generator in 130nm CMOS,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3194-3198, Oct. 2021.
[27] K. Jeong et al., “A PVT-Robust AFE-Embedded Error-Feedback Noise-Shaping SAR ADC with Chopper-Based Passive High-Pass IIR Filtering for Direct Neural Recording” in IEEE Transactions on Biomedical Circuits and Systems (TBCAS), vol. 16, no. 4, pp. 679-691, Aug. 2022.
[28] H. Kassiri et al., “Battery-less Tri-band-radio neuro-monitor and responsive neuro-stimulator for diagnostics and treatment of neurological disorders,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1274-1289, May 2016.
[29] L. -J. Chen and S. -I. Liu, “A 12-bit 3.4 MS/s Two-Step Cyclic Time-Domain ADC in 0.18-μm CMOS,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 4, pp. 1470-1483, April 2016.
[30] G. -Y. Huang, C. -C. Liu, Y. -Z. Lin and S. -J. Chang, "A 10-bit 12-MS/s successive approximation ADC with 1.2-pF input capacitance," 2009 IEEE Asian Solid-State Circuits Conference, Taipei, Taiwan, 2009, pp. 157-160
[31] Isacco A. Design of Sigma-Delta Converters in MATLAB®/Simulink®. Switzerland: Springer Nature; 2019
[32] Shanthi P. Richard S. Gabor C. T. Understanding Delta-Sigma Data Converters. IEEE Press Series on Microelectronic Systems; 2017
[33] B. Razavi, “The ring oscillator [a circuit for all seasons],” IEEE Solid State-Circuits Mag., vol. 11, no. 4, pp. 10–81, Nov. 2019.
[34] M. Grozing, B. Phillip, and M. Berroth, “CMOS ring oscillator with quadrature outputs and 100 MHz to 3.5 GHz tuning range,” in Proc. Eur. Solid-State Circuits Conf., pp. 679–682, Sept. 2003.
校內:2028-07-04公開