| 研究生: |
伍天山 Ng, Tin-San |
|---|---|
| 論文名稱: |
冷軋鐵鈀合金之織構與微結構發展之研究 Effect of Cold Rolling on Texture and Microstructure in FePd alloys |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | FePd 、Texture 、Microstructure 、ODF 、EBSD |
| 外文關鍵詞: | FePd, Texture, Microstructure, ODF, EBSD |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討冷軋FCC相鐵鈀合金的織構與微結構之發展。由於冷軋製程可以使材料具有優選方位與較小的晶粒尺寸,因此,有利於退火後所得到硬磁性FCT相鐵鈀薄片具有較佳的矯頑磁性。在冷軋製程中,FCC相鐵鈀合金厚度的減少率分別為50%及88%。再利用X-ray diffraction (XRD)與electron backscatter diffraction (EBSD)分析FCC相的鐵鈀合金的織構與微結構。
實驗結果發現試片厚度減少從50%到88%,{220}優選方位逐漸增加,並且Brass {110}<112>和Goss {011}<100>方位強度隨之增加,而Copper {112}<111>方位強度不會消失反而增加。EBSD所分析的方位分佈函數(orientation distribution function, ODF)之結果與XRD所分析的ODF相似,因此以EBSD分析微結構是可信的。在微結構方面,雙晶密度在軋延之前(0%軋延量)為46%。在50%軋延量時,雙晶密度為12%,Deformation Twin、Transition Band和Deformation Band等微結構被觀察到。而Micro-shear bands、Deformation Twins和Deformation Bands等在88%軋延量時亦被觀察,雙晶密度增加為20%。平均晶粒尺寸(28.55 ~ 3.43 μm)隨著減少率(0 ~ 88%)增加而減少。除此之外,Dislocation Slip、Mechanical Twinning和Shear Banding被認為是88%減少率的變形機制。Goss方位的Shear Bands 推測是導致Goss成份和Copper成份上升的原因。
This study focused on observing the evolution of texture and microstructure in the face-centered cubic (fcc) disordered phase of FePd alloys during cold rolling. Cold rolling can produce preferential orientation and small grain size. Therefore, the hard magnetic properties, such as coercivity, of the face-centered tetragonal (fct) ordered phases of FePd alloys will be improve after the fct phase transformation annealing.
Here, fcc phase of FePd alloys are cold rolled to moderate deformation (50% reduction) and high deformation (88% reduction). Then, the evolutions of texture and microstructure of fcc FePd alloys for 50% and 88% reduction would be analyzed by using x-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques.
As the result of texture analysis form 50% to 88% reduction, preferential orientation of {220} is gradually increasing during cold rolling from 50% to 88% reduction. In addition to this, orientation densities of Brass {110}<112> and Goss {011}<100> are increasing. Copper {112}<111> is not diminished instead of increasing. On the other hands, the orientation distribution functions (ODFs) for 50% and 88% obtained by EBSD compared with that by XRD. Therefore, the results of microstructure analysis by EBSD are confident with these by XRD. For the microstructure analysis, annealing twins of <111>60o is widely observed as 46% fraction of twin at the reduction 0%. For 50% reduction, twin fraction has decreased to 12%. Deformation twins, deformation bands and transition bands have been observed at 50% reduction. For 88% reduction, twin fraction has increased to 20%. Micro-shear bands, deformation twins have been observed at 88% reduction. Average cell size decreases as 28.55 to 3.43m during cold rolling from 0% to 88%. In addition to those, dislocation slip, mechanical twinning and shear banding are considered to be the deformation mechanism after 88% cold rolling. Occurrence of Goss-oriented micro-shear bands are supposed to be the cause of increasing of Goss and Copper components at 88% reduction.
1. S. N. Piramanayagam, Perpendicaular recording media for hard disk drives. J. Appl. Phys., (2007). 102: p. 011301.
2. M. Yanagisawa, N. Shiota, H. Yamaguchi and Y. Suganuma, Corrosion-resisting Co-Pt thin film medium for high density recording. IEEE Trans. Magn., (1983). 19: p. 1638.
3. K.R. Coffey, M. A. Parker and J. K. Howard, High anisotropy L10 thin films for longitudinal recording. IEEE Trans. Magn., (1995). 31: p. 2737.
4. D. Weller, and A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn., (1999). 35: p. 4423.
5. S. Sun , C.B. Murry, D. Weller, L. Folk, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, (2000). 287: p. 1989.
6. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W.A. Soffa, Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scripta Metall. Mater., (1995). 33: p. 1793.
7. A.R. Deshpande, H. Xu , and J.M.K. Wiezorek, Effects of grain size on coercivity of combined-reaction-processed FePd intermetallics. Acta Mater., (2004). 52: p. 2903.
8. A.R. Deshpande, and J.M.K. Wiezorek, Magnetic age hardening of cold-deformed bulk equiatomic Fe-Pd intermetallics during isothermal annealing. J Magn Magn Mater, (2004). 270: p. 157.
9. G.W. Qin, Y P. Ren, N. Xiao, B. Yang, L. Zuo and K. Oikawa, Development of high density magnetic recording media for hard disk drives: materials science issues and challenges. International Materials Reviews, (2009). 54: p. 157.
10. G. Choe, J.N. Zhou, B. Demczyk, M. Yu, M. Zheng, R. Weng, A. Chekanov, K.E. Johnson, F. Liu, and K. Stoev, Highly in-plane oriented CoCrPtB longitudinal media for 130-Gb/in2 recording. IEEE Trans. Magn., (2003). 39: p. 633.
11. Y. Hsu , V. Nikitin, D. Hsiao, J. Chen, Y. Zheng, A. Pentek, J. Loo, M. Jiang, S. Yuan, M. Alex, Y. Luo, M. Salo, T. Okada, Y. Maruyam and K. Meitsuoda, Challenges for Perpendicular Write Heads at High Recording Density. IEEE Trans. Magn., (2007). 43(2): p. 605.
12. S. Iwasaki, and K. Takemura, An Analysis for the Circular Mode of Magnetization in Short Wavelength Recording. IEEE Trans. Magn., (1975). 11: p. 1173.
13. D. Litvinov, and S. Khizroev, Perpendicular magnetic recording: Playback. J. Appl. Phys., (2005). 97: p. 071101.
14. S. Khizroev, and D. Litvinov, Perpendicular magnetic recording: Writing process. J. Appl. Phys., (2004). 95: p. 4521.
15. S. Khizroev, and D. Litvinov, Perpendicular Magnetic Recording. (2005), USA: Kluwer Academic Publishers, Dordrecht.
16. D.E. Laughlin, K. Srinivasan, M. Tanase, and L. Wang, Crystallographic aspects of L10 magnetic materials. Scripta Mater., (2005). 53: p. 383.
17. A. Kulovits, J.M.K. Wiezorek, W.A. Soffa, W. Püschl, and W. Pfeiler, The influence of deformation by cold-work on L10-ordering in anisotropic FePd. Journal of Alloys and Compunds, (2004). 378: p. 285.
18. R. A. Ristau, K. Barmak, L. H. Lewis and J. K. Howard, On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. J. Appl. Phys., (1999). 86: p. 4527.
19. R.A. McCurrie, and P. Gaunt, The magnetic properties of platinum cobalt near the equiatomic composition part I. the experimental data. Philos. Mag., (1966). 13: p. 567.
20. A. Tsoukatos, H. Wan, G. C. Hadjipanayis, Y.J. Zhang, M. Waite and S.I. Shah, Thickness effects on the magnetic hysteresis of Co-Pt films. J. Magn. Magn. Mater., (1993). 118: p. 387.
21. K. Watanabe, T. Kaneko, and S. Ohnuma, Temperature Dependence of Magnetic Properties in Co-Pt, Fe-Pt and Cr-Pt Permanent Magnet Alloys. Materials Transactions, JIM, (1994). 35: p. 136.
22. A.S. Darling, Cobalt-Platinum Alloys. Platinum Met. Rev., (1963). 7: p. 96.
23. D.J. Craik, Cobalt-Platinum Permanent Magnets. Platinum Met. Rev., (1972). 16: p. 129.
24. K. Wantanabe, and H. Masumoto, On the high-energy product Fe-Pt permanent magnet alloys. Trans. Jpn. Inst. Met., (1983). 24: p. 627.
25. J.A. Aboaf, S.R. Herd and E. Kolkhol, Magnetic properties and structure of cobalt-platinum thin films. IEEE Trans. Magn., (1983). 19: p. 1514.
26. S. Shiomi, T. NaKakita, T. Kobayashi, and M. Masuda, Effect of Annealing on Magnetic Properties of Sputtered CoPt Alloy Films. Jpn. J. Appl. Phys., (1993). 32: p. L1058.
27. D. L. Martin, Processing and Properties of Cobalt-Platinum Permanent-Magnet Alloys. Trans. Met. Soc. AIME, (1958). 212: p. 478.
28. V. Tutovan, and V. Georgescu, Sur le comportement magnétique des couches minces électrolytiques de Co-Pt. Thin Solid Flim (1979). 61: p. 133.
29. T. B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary alloy phase diagrams. Materials Park, OH: ASM International. Vol. 2. (1996).
30. B. Zhang, M. Lelovic,and W.A. Soffa, The formation of polytwinned structures in Fe-Pt and Fe-Pd alloys. Scripta Metall. Mater., (1991). 25: p. 1577.
31. B. Zhang, PhD thesis. University of Pittsburgh, (1991).
32. T. Klemmer , and W.A. Soffa, Solid-solid phase transformations. Warrendale, (PA): TMS, (1994): p. 969.
33. Ye.V. Vlasova, and Ye.Z. Vintaykin, Study of the Fine Structure of Fe-Pt Alloys. Fiz. Metal. Metalloved., (1969). 27: p. 60.
34. T. Kelmmer, PhD thesis. University of Pittsburgh, (1995).
35. A.R. Deshpande, A. Al-Ghaferi , H. Xu , H. Heinrich , and J.M.K. Wiezorek, Nanostructural design of advanced materials : A commemorative volume on Prof. G. Thosmas' seventeth birthday. London: Elsevier, (2003): p. 129.
36. A.R. Deshpande, and J.M.K. Wiezorek, Sur le comportement magnétique des couches minces électrolytiques de Co-Pt. J. Magn. Magn. Mater., (2004). 270: p. 157.
37. A.R. Deshpande, J.R. Blachere, and J.M.K. Wiezorek, Texture evolution in combined reaction transformed equiatomic ferromagnetic L10-ordered FePd intermetallics. Scripta Mater., (2006). 54: p. 955.
38. E. Hornbogen, Combined reactions. Metall. Trans. A, (1979). 10: p. 947.
39. A.R. Deshpande, Masters Thesis, in University of Pittsburgh. (2004).
40. Olaf Engler, and Valerie Randle, Introduction to Texture Analysis: macrotexture, and orientation mapping 2nd ed. (2010), United States of America: CRC Press. 3.
41. T. Leffers, and R.K. Ray, The brass-type texture and its deviation from the copper-type texture. Progress in Materials Science, (2009). 54: p. 351.
42. G. Wessermann, and J. Grewen, Texturen metallischer Werkstoffe. Berlin: Springer, (1962): p. 181.
43. V. Göler Frhr, and G. Sachs, Walz- und Rekristallisationstextur regular-flächenzentrierter Metalle III. Z Physik, (1929). 56: p. 477.
44. H. Hu, P.R Sperry and P.A. Beck, Rolling textures in face-centered cubic metals. J. Metal., (1952). 4: p. 76.
45. Y. Zhou, Y. S. Tóth, and K. W. Neale, On the Stablity Of The Ideal Orientations Of Rolling Textures For F.C.C. Polycrystals. Acta metall. mater., (1992). 40: p. 3179.
46. G. Wassermann, Der Einfluss mechanischer Zwillingsbildung auf dier Entstehung der Walztexturen kubisch flächenzentrierter Metalle. Z Metallkde, (1963). 54: p. 61.
47. F. Haessnet, Zur Systematik und Deutung der Walztexturen kubisch flächenzentrierter Metalle und Legierungen. Habilitationsschrift. Technische Hochschule Stuttgatt, (1963).
48. F. Haessner, Zur Entwicklung der Messingtextur an gewalzten Nickel–Kobalt–Legierungen. Z Metallkde, (1963). 54: p. 79.
49. J. Hirsch, and K. Lücke, Overview No. 76 Mechanism of Deformation and Development of Rolling Textures in Polycrystalline F.C.C. Metals - I. Description of Rolling Texture Development in Homogenous CuZn Alloys. Acta metall., (1988). 36: p. 2863.
50. H. Xu, and J.M.K. Wiezorek, Transmission electron microscopy of room temperature deformed polytwinned L10-ordered FePd. Acta Mater., (2004). 52: p. 395.
51. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield, Deformation structure and textures in cold-rolled 70:30 brass. Metal Science, (1978): p. 343.
52. F.J. Humphreys, and M. Hatherly, Recrystallization and Related Annealing Phenomena. (2004): Elsevier.
53. N.Jia, F. Roters, P. Eisenlohr, C. Kords and D. Raabe, Non-crystallographic shear banding in crystal plasticity FEM simulations Example of texture evolution in α-brass. Acta Mater., (2012). 60: p. 1099.
54. F. Adcock, Shear Bands in Deformed Copper. J. Inst, Met., (1922). 27: p. 73.
55. B.J. Duggan, M. Hatherly, and W.B. Hutchinson, Recrystallization Studies In 70:30 Brass using a High Voltage Electron Microscope. Scripta Mater., (1978). 12: p. 1293.
56. B. Fargette, and D. Whitwham, Plastic Deformation of the Brass CuZn30 by Heavy Rolling Reductions. Mém. Sci. Rév. Metall., , (1976). 73: p. 197.
57. D. Dorner, S. Zaefferer, and D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Mater., (2007). 55: p. 2519.
58. C.S. Barrett, and T.B. Massalski, Structure of Metals Crystallographic Methods, Principles and Data: 3rd ed. (1980), New York: Pergamon.
59. A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field, Electron Backscatter Diffraction in Materials Science: Second Edition. (2009), New York: Springer Science+Business Media.
60. V. Randle, Application of electron backscatter diffraction to grain boundary characterization. International Materials Reviews, (2004). 49: p. 1.
61. Orientation Imaging Mircroscopy Analysis v.5.2, Ametek, United States of America. (2007).
62. S.G. Chowdhury, S. Das and P.K. De, Cold rolling behaviour and texture evolution in AISI 316L austenitic stainless steel. Acta Mater., (2005). 53: p. 3951.
63. S. Vercammen, B. Blanpain, B.C.D Cooman,and P. Wollants, Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater., (2004). 52: p. 2005.
64. C. Donadille, R. Valle, P. Dervin, and R. Penelle, Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: example of an austenitic stainless steel. Acta Mater., (1989). 37: p. 1547.
65. S. Mahajan, C.S. Pande, M.A. Imam and B.B. Rath, Formation of annealing twins in f.c.c. crystals. Acta Mater., (1997). 45: p. 2633.