| 研究生: |
謝忠憲 Shieh, Chung-Hsien |
|---|---|
| 論文名稱: |
整合再生式除五除頻器之60-/24-GHz雙模共存訊號源晶片設計 60-/24-GHz Dual-Mode Co-existence Signal Source Chip Design Integrated with A Regernerative Divide-by-5 Divider |
| 指導教授: |
黃尊禧
Huang, T.-H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 24 GHz 、60 GHz 、振盪器 、再生式除頻器 |
| 外文關鍵詞: | 60 GHz, 24 GHz, VCO, regernerative divider |
| 相關次數: | 點閱:83 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一使用再生式除五除頻器實現之60-/24-GHz雙模共存的訊號源架構,並針對其前端電路進行設計與實現;電路部分分為兩大部分,包含V-band壓控振盪器和再生式除五除頻器;而再生式除五除頻器又包含一雙端輸出混頻器及一雙頻之除頻器兩個區塊,在論文中振盪器及除頻器兩個主要區塊皆使用TSMC 90-nm GUTM CMOS製程進行下線。
所設計之應用於V-band之壓控振盪器,使用錐狀傳輸線電感,並以浮接金屬層於電感底端和矽基板之間製造屏蔽,藉此降低由基板造成的損耗,設計上利用此電感之高Q值特性,能有效提升整體振盪器之Q值,使得振盪器在毫米波頻段能更容易單純直接使用可變電容,而不會受限於可變電容隨著頻率上升造成Q值下降的負面影響。在量測結果上,振盪器的頻率可調範圍有5.525 GHz,大約9.2%的變化比率;相位雜訊方面,在頻率偏移1 MHz處為-90.04 dBc/Hz,而整體核心電路在0.9 V的電源電壓下,功耗為13.53 mW。
再生式除五除頻器整體電路結合了一主動式混頻器和一串疊式除四除頻器,混頻器採用雙端輸出之Gilbert-cell架構,當輸入一5倍頻之訊號時,其會與回授回來之1倍頻進行混頻產生6倍頻及4倍頻,再濾除掉6倍頻後,4倍頻訊號會注入下一級串疊式除四除頻器,最後產生所需之訊號;而串疊式除四除頻器之部分由一注入式鎖定除二除頻器串疊(Cascode)一電流邏輯式除二除頻器組合而成,此架構能由下方注入式鎖定器直接輸出2倍頻,同時訊號能以電流形式注入上端電流邏輯式除頻器產生1倍頻,使得整體之再生式除頻器最後能夠同時輸出除數為5及2.5之訊號,其在電源電壓為1.6 V下總共消耗56.1 mW。
This thesis proposes an architecture of 60-/24-GHz dual-mode co-existence signal source circuit using a regernerative divide-by-5(DIV-5) divider, and the front end of the signal source including the V-band VCO and the DIV-5 divdier is designed and implemented. Furthermore, the regernerative divider includes a differential mixer and a dual-band frequency divider. Both of the two main blocks, the VCO and the divider in this thesis are fabricated by TSMC 90-nm GUTM CMOS process.
A tapered transmission line inductor is applied in the design of the V-band VCO. The floating metal strips are placed under the inductor in order to reduce the substrate loss. By using this high-Q factor inductor, it is efficient to improve the Q factor of the oscillator. After that, it’s easier to use varator directly in the design of the oscillator without any further technique since the VCO will not be limited by the side effect that the Q factor of the varator declines as the frequency rises. The frequency tuning range is 5.525 GHz (9.2%) observed from the measurment results. In addition, the phase noise of the VCO is -90.04 dBc/Hz at 1 MHz offset. The VCO core consumes 13.53 mW at 0.9 V supply voltage.
The regenerative divider consists of an active mixer and a cascode divide-by-4(DIV-4) divider. The mixer is composed of Gilbert-type cells. When the input signal is 5f0, the 5f0 will be mixed with the signal f0 from the feedback loop, then signal 4f0 and 6f0 are generated at the output of the mixer. After filtering out the 6f0, the signal 4f0 is injected into the DIV-4 divider stage to generate the wanted signal f0. And the DIV-4 divider is a cascode structure which composed of an injection-locked divide-by-2 divider (DIV-2 ILFD) and a current-mode logic (CML) divide-by-2 divider. In this structure, the divider can generate 2f0 at the output of the ILFD. Moreover, the signal will be injected into the cascode CML in the form of current to generate the signal f0. In this way, the regernerative divider has two division ratios 2.5 and 5 at the output of the ILFD and CML, respectively. The power consumtion is 56.1 mW at 1.6 V supply voltage.
[1] B. K. Parkm O. B. Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no 5, pp. 1073-1079, May 2007.
[2] Y. Xiao, J. Lin, O. B. Lubecke, and M. Lubecke, “Frequency-tuning technique for remot detection of heartbeat and respiration using low-power double-sideband transmission in Ka- band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023-2032, May 2006.
[3] W. Pan, J. Wang, J. Huangfu, C. Li, and L. ran, “Null point elimination using RF phase shifter in continuous-wave Doppler radar system,” Electron. Lett., vol. 47, pp. 1196-1198, 2011.
[4] 邱振豪,60-/24-GHz雙模共存訊號源電路整合與設計,國立成功大學電機工程學系碩士論文,民國104年。
[5] X. Yi, C. C. Boon, J. Sun, N. Huang, and W. M. Lim, "A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications in 65 nm CMOS technology," in Proc. 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2013, pp. 417-420.
[6] V. Jain, B. Javid, and P. Heydari, "A BiCMOS Dual-Band Millimeter-Wave Frequency Synthesizer for Automotive Radars," IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2100-2113, 2009.
[7] C. Cao, Y. Ding, and O. K. K, "A 50-GHz Phase-Locked Loop in 0.13-μm CMOS," IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1649-1656, 2007.
[8] W. Hui and A. Hajimiri, "Silicon-based distributed voltage-controlled oscillators," IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 493-502, 2001
[9] C. Cao, E. Seok, and O. K. K, "192 GHz push-push VCO in 0.13 μm CMOS," Electronics Letters, vol. 42, no. 4, pp. 208-210, 2006.
[10] H. Ping-Chen, L. Ren-Chieh, C. Hong-Yeh, L. Chin-Shen, L. Ming-Fong, W. Huei, et al., "A 131 GHz push-push VCO in 90-nm CMOS technology," in Proc. 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers, 2005, pp. 613-616.
[11] David K. Cheng, Field and wave electromagnetics, 2nd Addison-Wesley, 1898.
[12] B. Kleveland, C. H. Diaz, D. Vock, L. Madden, T. H. Lee, and S. S. Wong, "Monolithic CMOS distributed amplifier and oscillator," in Proc. 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), 1999, pp. 70-71.
[13] J. Wood, T. C. Edwards, and S. Lipa, "Rotary traveling-wave oscillator arrays: a new clock technology," IEEE Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1654-1665, 2001.
[14] D. Ham and W. Andress, "A circular standing wave oscillator," in Proc. 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519), 2004, pp. 380-533 Vol.1.
[15] F. O. Mahony, C. P. Yue, M. Horowitz, and S. S. Wong, "10GHz clock distribution using coupled standing-wave oscillators," in Proc. 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC., 2003, pp. 428-504 vol.1.
[16] W. F. Andress and D. Ham, "Standing wave oscillators utilizing wave-adaptive tapered transmission lines," IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 638-651, 2005.
[17] R. J. Chan and J. C. Guo, "Analysis and modeling of skin and proximity effects for millimeter-wave inductors design in nanoscale Si CMOS," in Proc. 2014 9th European Microwave Integrated Circuit Conference, 2014, pp. 13-16.
[18] 游本立,應用於60 GHz及毫米波超寬頻無線通訊系統頻率合成器之新型切換電感技術與寬頻率可調範圍壓控振盪器,國立成功大學電機工程學系博士論文,民國102年。
[19] T. S. D. Cheung and J. R. Long, "Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits," IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1183-1200, 2006.
[20] H. Daquan, W. Hant, W. Ning-Yi, T. W. Ku, G. Qun, R. Wong, et al., "A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction," in Proc. 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, 2006, pp. 1218-1227.
[21] H. Y. Cho, T. J. Yeh, S. Liu, and C. Y. Wu, "High-Performance Slow-Wave Transmission Lines With Optimized Slot-Type Floating Shields," IEEE Transactions on Electron Devices, vol. 56, no. 8, pp. 1705-1711, 2009.
[22] C. Changhua and O. K. K, "Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, 2006.
[23] Y. Seong-Mo and O. K. K, "Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 74-81, 2006.
[24] T. Y. Lu, C. Y. Yu, W. Z. Chen, and C. Y. Wu, "Wide Tunning Range 60 GHz VCO and 40 GHz DCO Using Single Variable Inductor," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 2, pp. 257-267, 2013.
[25] H. H. Hsieh, Y. H. Chen, and L. H. Lu, "A Millimeter-Wave CMOS LC-Tank VCO With an Admittance-Transforming Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1854-1861, 2007.
[26] T. Soorapanth, C. P. Yue, D. K. Shaeffer, T. I. Lee, and S. S. Wong, "Analysis and optimization of accumulation-mode varactor for RF ICs," in Proc. 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215), 1998, pp. 32-33.
[27] J. Lee and B. Razavi, "A 40-GHz frequency divider in 0.18-μm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp. 594-601, 2004.
[28] R. L. Miller, "Fractional-Frequency Generators Utilizing Regenerative Modulation," Proceedings of the IRE, vol. 27, no. 7, pp. 446-457, 1939.
[29] T. N. Luo, S. Y. Bai, and Y. J. E. Chen, "A 60-GHz 0.13-μm CMOS Divide-by-Three Frequency Divider," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2409-2415, 2008.
[30] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
[31] K. Yamamoto and M. Fujishima, "55GHz CMOS frequency divider with 3.2GHz locking range," in Proc. Proceedings of the 30th European Solid-State Circuits Conference, 2004, pp. 135-138.
[32] H. R. Rategh and T. H. Lee, "Superharmonic injection-locked frequency dividers," IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, 1999.
[33] C. Y. Wu and C. Y. Yu, "Design and Analysis of a Millimeter-Wave Direct Injection-Locked Frequency Divider With Large Frequency Locking Range," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1649-1658, 2007.
[34] Y. H. Kuo, J. H. Tsai, H. Y. Chang, and T. W. Huang, "Design and Analysis of a 77.3% Locking-Range Divide-by-4 Frequency Divider," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2477-2485, 2011.
[35] P. Sakian, R. Mahmoudi, P. v. Zeijl, M. Lont, and A. v. Roermund, "A 60-GHz double-balanced homodyne down-converter in 65-nm CMOS process," in Proc. 2009 European Microwave Integrated Circuits Conference (EuMIC), 2009, pp. 258-261.
[36] F. Zhang, E. Skafidas, and W. Shieh, "60 GHz double-balanced up-conversion mixer on 130 nm CMOS technology," Electronics Letters, vol. 44, no. 10, pp. 633-634, 2008.
[37] Y. H. Kuo, J. H. Tsai, W. H. Chou, and T. W. Huang, "Admittance-transforming injection-locked frequency divider and low-supply-voltage current mode logic divider," in Proc. 2010 Asia-Pacific Microwave Conference, 2010, pp. 782-785.
[38] Z. D. Huang, C. Y. Wu, and B. C. Huang, "Design of 24-GHz 0.8-V 1.51-mW Coupling Current-Mode Injection-Locked Frequency Divider With Wide Locking Range," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1948-1958, 2009.
[39] R. Nonis, E. Palumbo, P. Palestri, and L. Selmi, "A Design Methodology for MOS Current-Mode Logic Frequency Dividers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2, pp. 245-254, 2007.
[40] R. Behzad, Design of Analog CMOS Integrated Circuits. New York:McGraw-Hill, 2001.
[41] P. K. Tsai, T. H. Huang, and Y. H. Pang, "CMOS 40 GHz divide-by-5 injection-locked frequency divider," Electronics Letters, vol. 46, no. 14, pp. 1003-1004, 2010.
[42] Y. H. Chang and Y. C. Chiang, "A low-power K-band divide-by-5 injection-locked frequency divider," in Proc. 2016 46th European Microwave Conference (EuMC), 2016, pp. 289-292.
[43] W. C. Lai, S. L. Jang, K. H. Lu, and Y. J. Su, "Wide-locking range divide-by-5 injection-locked frequency divider for wireless communication application," in Proc. 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), 2016, pp. 525-528.
[44] C. Changhua and O. K. K, "Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology," IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, 2006.
[45] W. Wu, J. R. Long, and R. B. Staszewski, "High-Resolution Millimeter-Wave Digitally Controlled Oscillators With Reconfigurable Passive Resonators," IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2785-2794, 2013.
[46] L. Li, P. Reynaert, and M. S. J. Steyaert, "Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank," IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 1950-1958, 2009.