簡易檢索 / 詳目顯示

研究生: 陳鉦翔
Chen, Jeng-Siang
論文名稱: 應用於旋轉電機上之非隔離式高降壓比轉換器
A Non-Isolated DC-DC Converter with High Step-Down Ratio for Rotating Electrical Machines
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 72
中文關鍵詞: 高降壓小訊號模型電壓回授控制
外文關鍵詞: high step-down, small-signal model, voltage feedback control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究意旨探討應用於旋轉電機上之非隔離式高降壓比轉換器,針對應用需求設計並分析具高降壓比及體積小之直流-直流轉換器架構。為提升系統穩定性與完整性,研究探討該轉換器於不同輸出功率條件下電路動作原理,並同時建構完整的交流擾動小訊號等效模型,此模型提供挑選適用補償器種類及回授控制重要設計資訊,其控制方法為負載電壓回授控制,該轉換器具備迴路相位裕度76.8˚與交越頻率23.3 kHz,確保系統具備良好暫態響應與穩態誤差控制能力。為驗證所提出電源轉換架構之效能與可行性,本研究建立一套硬體電路及實驗測試,系統規格經使用條件評估為輸入額定電壓300 V並具備±5%之容錯範圍,輸出電壓及最大功率目標為24 V及96 W。實驗結果顯示,系統於不同輸入電壓和輸出功率條件下皆可穩定輸出目標電壓,且具有良好輸出電壓調節能力及低輸出電壓漣波率,其中最高轉換效率可達81.6%,顯示本文所設計高降壓比轉換器於目標應用情境中具備實用性與高效能,適合整合於需高降壓比及體積小之相關電源轉換系統中。

    The purpose of this study is to investigate non-isolated high output ratio converters for rotary motor applications and to design and analyze DC-DC converter architectures with high output ratios and small sizes for application requirements. In order to improve the stability and integrity of the system, we investigate the circuit operation principle of the converter under different output power conditions and construct a complete AC small-disturbance-small-signal equivalent model, which provides important design information for the selection of the compensator and the feedback control, and the control method is the load-voltage feedback control, which is equipped with a loop phase margin of 76.8˚ and an overrun frequency of 23.3 kHz to ensure that the system has a good The control method is a load voltage feedback control with a phase margin of 76.8˚ and a crossover frequency of 23.3 kHz to ensure a good transient response and stable error control. In order to verify the performance and feasibility of the proposed power conversion architecture, a set of hardware circuits and experimental tests were conducted. The system specifications were evaluated under the conditions of use as input rated voltage of 300 V with ±5% error tolerance, and the output voltage and maximum power targets were 24 V and 96 W. The system is designed to provide the maximum power and output voltage of 24 V and 96 W. The system is designed to provide the maximum power and input voltage of 300 V with ±5% error tolerance. The experimental results show that the system can stably output the target voltage under different input voltage and output power conditions with good output voltage regulation and low output voltage ripple rate, and the maximum conversion efficiency can reach 81.6%, which demonstrates that the high dropout voltage converter designed in this paper has practicality and high performance in the target application, and it is suitable to be integrated into the related power conversion system that requires high dropout voltage ratio and small size. The design is suitable for integration into relevant power conversion systems that require high step-down and small size.

    摘要 II Extended Abstract III 目錄 XIII 圖目錄 XV 表目錄 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 論文架構 4 第二章 降壓型轉換器架構分析探討 5 2-1 簡介 5 2-2 非隔離型降壓轉換器 5 2-3 隔離型降壓轉換器 11 第三章 高降壓比轉換器分析 15 3-1 簡介 15 3-2 儲能電感電流連續模式動作原理 16 3-3 儲能電感電流連續模式理論分析 19 3-4 儲能電感電流不連續模式動作原理 21 3-5 儲能電感電流不連續模式理論分析 24 3-6 系統小訊號模型分析 27 3-7 系統控制對輸出電壓轉移函數 31 3-8 系統迴路轉移函數 33 第四章 實驗結果 37 4-1 前言 37 4-2 系統電路於額定輸入電壓下實驗 38 4-3 系統於額定輸入電壓之電壓回授控制驗證 40 4-4 系統電路於輸入電壓容錯驗證 41 4-5 系統電路於輸入電壓容錯下之電壓回授控制驗證 45 第五章 結論與未來研究方向 48 5-1 結論 48 5-2 未來研究方向 49 參考文獻 50

    [1] Chuang Liu et al., “Cascade dual-boost/buck active-front-end converter for intelligent universal transformer,” IEEE Transactions on Industrial Electronics, Dec. 2012.
    [2] B. N. Alajmi, M. I. Marei, I. Abdelsalam and N. A. Ahmed, “Multiphase Interleaved Converter Based on Cascaded Non-Inverting Buck-Boost Converter,” IEEE Access, 2022.
    [3] M. Uno, D. Cheng, S. Onodera and Y. Sasama, “Bidirectional Buck-Boost Converter Using Cascaded Energy Storage Modules Based on Cell Voltage Equalizers,” IEEE Transactions on Power Electronics, Jan. 2023.
    [4] J. Yu, M. Liu, D. Song, J. Yang and M. Su, “A Soft-Switching Control for Cascaded Buck-Boost Converters Without Zero-Crossing Detection,” IEEE Access, 2019.
    [5] E. Guerrero, H. Sira, A. Martinez, J. Linares and E. Guzman, “On The Robust Control of Parallel-Cascade DC/DC Buck Converter,” IEEE Latin America Transactions, Feb. 2016.
    [6] P. Sun, C. Liu, J. -S. Lai and C. -L. Chen, “Cascade Dual Buck Inverter With Phase-Shift Control,” IEEE Transactions on Power Electronics, April 2012.
    [7] M. O. Badawy, Y. Sozer and J. A. De Abreu-Garcia, “A Novel Control for a Cascaded Buck–Boost PFC Converter Operating in Discontinuous Capacitor Voltage Mode,” IEEE Transactions on Industrial Electronics, July 2016.
    [8] J. Yu, M. Liu, D. Song, J. Yang and M. Su, “A Soft-Switching Control for Cascaded Buck-Boost Converters Without Zero-Crossing Detection,” IEEE Access, 2019.
    [9] Yaow-Ming Chen, Sheng-Yu Tseng, Cheng-Tao Tsai and Tsai-Fu Wu, “Interleaved buck converters with a single-capacitor turn-off snubber,” IEEE Transactions on Aerospace and Electronic Systems, July 2004.
    [10] O. Garcia, P. Zumel, A. de Castro and A. Cobos, “Automotive DC-DC bidirectional converter made with many interleaved buck stages,” IEEE Transactions on Power Electronics, May 2006.
    [11] Y. -S. Roh, Y. -J. Moon, J. Park, M. -G. Jeong and C. Yoo, “A Multiphase Synchronous Buck Converter With a Fully Integrated Current Balancing Scheme,” IEEE Transactions on Power Electronics, Sept. 2015.
    [12] F. Yang, J. Zhang, Y. Liu and K. Yao, “Predictive Current Control and Current Balance Method for Interleaved Buck EDM Pulse Generator,” IEEE Transactions on Industrial Electronics, Dec. 2024.
    [13] K. Li, S. -C. Tan and S. Y. R. Hui, “Interleaved Buck-Type Rectifier With Pseudo-DC-Link Capacitors for Automatic Current Balancing,” IEEE Transactions on Industrial Electronics, Dec. 2022.
    [14] Y. -C. Hsieh, H. -L. Cheng, E. -C. Chang and W. -D. Huang, “A Soft-Switching Interleaved Buck–Boost LED Driver With Coupled Inductor,” IEEE Transactions on Power Electronics, Jan. 2022.
    [15] B. Soleymani, O. Bagheri, E. Adib and S. Eren, “A ZVS High Step-Down Converter With Reduced Component Count and Low Ripple Output Current,” IEEE Open Journal of Power Electronics, 2024.
    [16] S. A. Mousavi-Rozveh, A. Khorsandi and E. Adib, “Soft-Switched Interleaved Ultra-High Step-Down Converter With Low-Voltage Stress,” IEEE Transactions on Power Electronics, Nov. 2024.
    [17] C. -T. Pan, C. -F. Chuang and C. -C. Chu, “A Novel Transformerless Interleaved High Step-Down Conversion Ratio DC–DC Converter With Low Switch Voltage Stress,” IEEE Transactions on Industrial Electronics, Oct. 2014.
    [18] X. Ruan, B. Li, Q. Chen, S. -C. Tan and C. K. Tse, “Fundamental Considerations of Three-Level DC–DC Converters: Topologies, Analyses, and Control,” IEEE Transactions on Circuits and Systems I: Regular Papers, Dec. 2008.
    [19] I. -O. Lee, S. -Y. Cho and G. -W. Moon, “Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio,” IEEE Transactions on Power Electronics, Aug. 2012.
    [20] M. Esteki, B. Poorali, E. Adib and H. Farzanehfard, “Interleaved Buck Converter With Continuous Input Current, Extremely Low Output Current Ripple, Low Switching Losses, and Improved Step-Down Conversion Ratio,” IEEE Transactions on Industrial Electronics, Aug. 2015.
    [21] Z. Yao et al., “Nonlinear Inductor-Based Single Sensor Current Balancing Method for Interleaved DC–DC Converters,” IEEE Transactions on Power Electronics, April 2024.
    [22] S. Khalili, N. Molavi and H. Farzanehfard, “Soft-Switched Asymmetric Interleaved WCCI High Step-Down Converter With Low-Voltage Stress,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Dec. 2021.
    [23] D. -V. Bui, H. Cha and V. -C. Nguyen, “Asymmetrical PWM Series-Capacitor High-Conversion-Ratio DC–DC Converter,” IEEE Transactions on Power Electronics, Aug. 2021.
    [24] O. Kirshenboim, T. Vekslender and M. M. Peretz, “Closed-Loop Design and Transient-Mode Control for a Series-Capacitor Buck Converter,” IEEE Transactions on Power Electronics, Feb. 2019.
    [25] Z. Chen, T. Xiang, Y. Wu, L. Zhao and X. Tang, “Current Sharing Strategy of Three-Phase Series Capacitor Buck Converter for Wide Output Voltage Range Application,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Feb. 2023.
    [26] D. Sha, Y. Xu, J. Zhang and Y. Yan, “Current-Fed Hybrid Dual Active Bridge DC–DC Converter for a Fuel Cell Power Conditioning System With Reduced Input Current Ripple,” IEEE Transactions on Industrial Electronics, Aug. 2017.
    [27] N. Rana, M. Kumar, A. Ghosh and S. Banerjee, “A Novel Interleaved Tri-State Boost Converter With Lower Ripple and Improved Dynamic Response,” IEEE Transactions on Industrial Electronics, July 2018.
    [28] S. Hasanpour, A. Mostaan and S. K. S. Haghighi, “Dual-Output Classic Buck and Buck–Boost Converter With Fast Dynamic Response,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, Oct. 2024.
    [29] G. Vazquez-Guzman et al., “Design of a Step-Down Non-Isolated DC-DC n-Cell Converter With a High Reduction Ratio,” IEEE Access, 2024.
    [30] S. Khalili, M. Esteki, M. Packnezhad, H. Farzanehfard and S. A. Khajehoddin, “Fully Soft-Switched Non-Isolated High Step-Down DC–DC Converter With Reduced Voltage Stress and Expanding Capability,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Feb. 2023.
    [31] C. Chen et al., “A Coupled-Inductor-Based Nonisolated DC-DC Converter With High Step-Down and Wide Input Voltage,” IEEE Transactions on Industry Applications, July-Aug. 2023.
    [32] M. Biswas, H. -C. Kim and J. -W. Park, “A Coupled Inductor-Based High Step-Down/ Step-Up DC-DC Nonisolated Bidirectional Converter With Reduced Ripple in Current and Voltage Stress,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Aug. 2024.
    [33] S. -W. Seo, J. -H. Ryu and J. -S. Lee, “Bidirectional High Step-Up/Down DC/DC Converter With a Coupled Inductor and Switched Capacitor,” IEEE Transactions on Circuits and Systems I: Regular Papers, Dec. 2024.
    [34] L. Yu, L. Wang, C. Yang, L. Zhu, Y. Gan and H. Zhang, “A Novel Nonisolated GaN-Based Bidirectional DC–DC Converter With High Voltage Gain,” IEEE Transactions on Industrial Electronics, Sept. 2022.
    [35] R. K. Garg and M. Veerachary, “A Non-isolated Bidirectional DC--DC Converter With Current Ripple Cancellation at a Selectable Duty Ratio,” IEEE Transactions on Industry Applications, March-April 2025.
    [36] M. S. Khan, S. S. Nag, A. Das and C. Yoon, “Analysis and Control of an Input-Parallel Output-Series Connected Buck-Boost DC–DC Converter for Electric Vehicle Powertrains,” IEEE Transactions on Transportation Electrification, June 2023.
    [37] Z. Chen, T. Xiang, Y. Wu, L. Zhao and X. Tang, “Current Sharing Strategy of Three-Phase Series Capacitor Buck Converter for Wide Output Voltage Range Application,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Feb. 2023.

    無法下載圖示 校內:2030-08-13公開
    校外:2030-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE