| 研究生: |
林筠蓁 Lin, Yun-Chen |
|---|---|
| 論文名稱: |
彰化地區離岸風場三維工程地質模型研究 Study of three dimensional ground model of offshore wind farm near Changhua area |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 離岸風電 、土壤地質調查 、圓錐貫入試驗 、工程地質模型 、克利金推估模型 |
| 外文關鍵詞: | offshore wind farm, geological investigation, cone penetration, ground model, kriging estimation model |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為配合國家再生能源政策,我國政府積極推動離岸風力發電之規劃開發。因我國前期大型海洋工程施工案例較少,且對於我國西部海域地質與地工資料掌握程度較低,致使我國離岸風場開發存在地質災害風險與開發成本不確定性。一般為降低離岸風場開發風險,風場開發商多於離岸風場開發前,以離岸風場角隅4點及中心點之少量鑽探資料進行開發可行性評估及概念設計,考量我國前期離岸風場開發實務經驗不足,以少量之鑽探資料恐難達成達成概念設計目標,透過建立場址完整之海域工程地質模型,可望提高概念設計成果可信度,釐清風場開發地質災害之風險。
依德國聯邦海事局(BSH)之建議,離岸風場於設計開發至施工維運各階段皆需進行海域地質調查,以滿足離岸風場各階段所需之地質資訊,以確保施工、運轉期間安全;本研究透過蒐集彰濱地區圓錐貫入試驗(CPT)成果,參考Robertson(2010)建議之土壤分類方法透過CPT取得之地工參數進行土壤行為指數計算,並依土壤行為指數分佈區間進行土壤分類,再利用地理資訊軟體建置彰濱地區工程地質模型,並將SPT-based工程地質模型[張倖偉(2017)]與CPT-based工程地質模型進行比對,說明以不同鑽探資料建置工程地質模型土層分佈之差異;各土層之地工參數資料則透過克利金法給定,將工程地質土層幾何分佈模擬結合克利金地工參數推估權重,可提供離岸風場三維土壤地質分佈資訊,供我國離岸風場海域地質調查規劃、地質災害評估及開發設計重要參考。
In order to cope with national renewable energy policy, government institutions have actively promote the offshore wind energy recently. Because of the lack of offshore environment information, the risk of geotechnical hazards are the challenges to offshore wind project developer and engineer unit. During development of our offshore windfarm, feasibility assessment is usually performed by borehole data at 4 corners and central point of offshore windfarm. Owing to lack of experience, engineer designers are hard to achieve concept design. To reduce the risk of offshore windfarm development, it is necessary to establish the ground model of Taiwan offshore wind farm.
Ground investigation is necessary in every phase of offshore wind farm development to satisfy the soil information and ensure the security during the construction and operation phases. The study completed 3D ground through the standard penetration test(SPT) and the cone penetration (CPT) result in Chang-Bin area. Due to the unknown soil classification from CPT in site, the study used the soil classification method proposed by Robertson (2010). In the study also compared the difference between SPT-based ground model and CPT-based ground, and figured out the reason causes this discrepancy. After completing building ground model, assigning the corresponding geotechnical parameter to each soil layer through kriging method would been done in the study. The 3D ground model can be used for geological investigation planning, soil disaster assessment, and assist the windfarm developer to meet the demand for conceptual and basic design
1. ASTM D-1586-11 (2011). “Standard test method for standard penetration test (SPT) and split-barrel sampling of soils.” ASTM Compass.
2. ASTM D3441 (2016). “Standard test method for mechanical cone penetration testing of soils.” ASTM Compass.
3. Begemann, H. K. S., (1965). “The friction jacket cone as an aid in determining the soil profile. ” Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Montreal, September 8 - 15, Vol. 2, pp. 17 – 20
4. Bhunia, G., S., Shit, P., K., Chattopadhyay, R.(2018).“Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil(West Bengal, India).” Annals of Agrarian Science, Vol 6, Issue 4, pp. 436-443.
5. BSH(2014).“Standard Baugrunderkundung für Offshore-Windenergieparks, Mindestanforderungen an die Baugrunderkundung und -untersuchung für Offshore-Windenergieanlagen, Offshore- Stationen und Stromkabel.” 2. Fortschreibung, February 2014 (in German).
6. Chiles, J. P., and Delfiner, P.(1999).“Geostatistics.” Journal of the American Statistical Association. New York:Wiley, 335-337
7. Décourt, L. (1990) “The Standard Penetration Test.” State of the Art Report, Norwegian Geotechnical Institute Publication, vol. 179 , pp. 1-12. Part ΙΙ. Oslo, Norway.
8. Goovaert, P.(2000).“Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.” Journal of Hydrology, Volume 228, Issues 1-2, Pages 113-129.
9. Goovaert, P.(1997) Geostatistics for Natural Resources Evaluation, Oxford University Press, New York.
10. Fugro Consultant, Inc.(2011)
11. (https://www.fugro.com/your-industry/power/offshore-wind)
12. Hatanaka, M, Uchida, A., Kakurai, M., and Aoki, M. (1998). “A consideration on the relationship between SPT-N value and internal friction angle of sandy soils. ” Journal of Structural Construction Engineering, Architectural Institute of Japan, Tokyo, No. 506, 125-129. (in Japanese)
13. Hatanaka, M. and Uchida, A., (1996).“Empirical correlation between penetration resistance and internal friction angle of sandy soils.” Soils and foundations, Vol. 36, No.4, pp. 1-9.
14. Jerzy, Lipiec and Boguslaw Usowicz, (2018).“Spatial relationships among cereal yield and selected soil physical and chemical properties.” Science of the Total Environment, Volume 633, pp.1579-1590.
15. Journel, A., G. and Huijbregts, C., J., (1978). “Mining Geostatistics. ” Academic Press, NewYork.
16. Kulhawy, F.H., and Mayne, P.H., (1990). “Manual on estimating soil properties for foundation design.” Report EL-6800 Electric Power Research Institute, EPRI, August 1990.
17. Lemon, A. M. and Jones, N. L. (2003).“Building solid models from boreholes and user-defined cross-sections.” Computer & Geosciences, Vol 29, No 5,pp. 547-555
18. Lunne, T., Robertson, P.K., and Powell, J.J.M., (1997). “Cone penetration testing in geotechnical practice.” Blackie Academic, EF Spon/Routledge Publ., New York, 1997, 312 pp.
19. Mayne, P. W., (2001).“Geotechnical site characterization using Cone, piezocone, SPT-u, and VST.” Civil and environmental Engineering Department, Georgia Institute of Technology.
20. Mitas, L., and H. Mitasova. (1988).“General Variational Approach to the Interpolation Problem. ” Computer and Mathematics with Applications. Vol. 16. No. 12. pp. 983–992. Great Britain.
21. Mulla, D., J. and Bhatti, A., U. (1991).“Estimation of soil properties and wheat yield on complex eroded hills using geostatistics and thematic mapper images.” Remote Sensing of Environment, Volume 37, Issue 3, September 1991, pp.181-191.
22. Nixon, I.K., (1982). “Standard penetration test: state of the art report.” Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam.
23. Ohsaki, N., (1959).“Ground profile of Tokyo district.” (In Japanese).
24. Peck, R. B., Hanson, W. E., and Thornburn, T. H.(1953), Foundation Engineering. LWW.
25. Power, P., Clare, M., Rushton, D., and Rattley, M. (2011). “Reducing geo-risks for offshore developments.” Proceedings of the 3rd International Symposium on Geotechnical Risk and Safety, pp. 217-224.
26. Pravat Kumar Shit, Gouri Sankar Bhunia and Rabindranath Chattopadhyay (2018). “Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India). ” Annals of Agarian Science,Volume 16, pp.436-443.
27. Ramsey, N. (Fugro Ltd.)“A Calibrated Model for the Interpretation of Cone Penetration Tests(CPTs) in North Sea Quaternary Soils.” (2002), Offshore Site Investigation and Geotechnics 'Diversity and Sustainability', pp.26-28 November, London, UK
28. Robertson, P. K., Campanella, R. G., Gillespie, D. and Greig, J (1986).“Use of Piezometer Cone Data.” , ASCE Specialty Conference, June.
29. Robertson, P. K., (2010a).“Soil behavior type from the CPT:an update.” 2nd International Symposium on Cone Penetration Testing, California, USA.
30. Robertson, P.K., (2010)b. “Estimating in-situ state parameter and friction angle in sandy soils from the CPT.” 2nd International Symposium on Cone Penetration Testing, CPT’10, Huntington Beach, CA, USA. www.cpt10.com
31. Robertson, P.K., (2010)c. “Evaluation of flow liquefaction and liquefied strength using the cone penetration test.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136(6), pp. 842-853
32. Robertson, P. K. and Cabal, K. L. (2015).Guide to Cone Penetration Testing for Geotechnical Engineering, 6th Edition.
33. Sanglerat, G. (1972).The Penetration and Soil Exploration; Interpretation of Penetration Diagrams — Theory and Practice,Elsevier Publishing Co, Amsterdam. pp 464
34. Schmertmann, J.H., (1975). “Measurement of In Situ Shear Strength.” Proceedings of the Specialty Conference on In Situ Measurement of Soil Properties, ASCE, Vol. 2, Raleigh, N.C., pp. 57–138.
35. Seed, H. Bolton; Idriss, I. M. (1970). "Soil moduli and damping factors for dynamic response analyses." Report No. EERC 70-10, Earthquake Engineering Resource Center, University of California, Berkley, California.
36. Sirvrikaya, O., Toğrol, E., (2002). “Relations between SPT-N and qu.” 5th International Congress on Advances in Civil Engineering, Istanbul, Turkey, pp.943-952.
37. Skempton, A.W. (1986). Standard Penetration Test Procedures and the Effects in Sand of Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation. Géotechnique, 36, 425-447.
38. Stroud M.A., (1974). “The standard penetration test in insensitive clays and soft rock.” Proceedings of the 1st European Symposium on Penetration Testing, Stockholm, Sweden, Vol. 2, No. 2, 7-375pp.36.
39. SUT(2014),Guide Notes for the Planing and Execution of Geophysical and Geotechnical Ground Investigations for Offshore Renewable Energy Developments; in UK.
40. Taro UCHIDA, Osamu YOKOYAMA, Ryuji SUZUKI, (2010). “A New Method for Assessing Deep Catastrophic Landslide Susceptibility. ”International Journal of Erosion Control Engineering, Vol.4, No 2.
41. Terzaghi, K., Peck, R.B. (1967). “Soil mechanics in engineering practice.” 2nd Ed., Wiley, New York.
42. Wolff, T.F. (1989). “Pile capacity prediction using parameter functions.” ASCE, Geotechnical Special Publication, No. 23, pp. 96–107.
43. 大彰化西北離岸風力發電股份有限公司(2017),「大彰化西北離岸風力發電計畫環境影響說明書」。
44. 大彰化東北離岸風力發電股份有限公司(2017),「大彰化東北離岸風力發電計畫環境影響說明書」。
45. 大彰化西南離岸風力發電股份有限公司(2017),「大彰化西南離岸風力發電計畫環境影響說明書」。
46. 大彰化東南離岸風力發電股份有限公司(2017),「大彰化東南離岸風力發電計畫環境影響說明書」。
47. 中能發電股份有限公司(2017),「中能離岸風力發電開發計畫環境影響說明書」。
48. 施國欽(1996), 「大地工程學(一)-土壤力學篇」,文笙書局
49. 台灣電力股份有限公司(2009),「彰濱離岸風力發電計畫可行性研究」。
50. 台灣電力股份有限公司(2014),「離岸風力發電第一期可行性研究」
51. 台灣電力股份有限公司(2017),「離岸風力發電第一期計畫環境影響說明書」。
52. 台灣電力股份有限公司(2019),「地質鑽探調查結果報告書」。
53. 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(27號風場)環境影響說明書」。
54. 海峽風電股份有限公司籌備處(2017),「海峽離岸風力發電計畫(28號風場)環境影響說明書」。
55. 海鼎一風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫1號風場環境影響說明書」。
56. 海鼎二風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫2號風場環境影響說明書」。
57. 海鼎三風力發電股份有限公司籌備處(2017) ,「海鼎離岸式風力發電計畫3號風場環境影響說明書」。
58. 海龍二號風電股份有限公司籌備處(2017) ,「海龍二號離岸風力發電計畫環境影響說明書」。
59. 海龍三號風電股份有限公司籌備處(2017) ,「海龍三號離岸風力發電計畫環境影響說明書」。
60. 福芳風力發電股份有限公司籌備處(2017),「彰化福芳離岸風力發電計畫環境影響說明書」。
61. 彰芳風力發電股份有限公司籌備處(2017),「彰化彰芳離岸風力發電計畫環境影響說明書」。
62. 西島風力發電股份有限公司籌備處(2017),「彰化西島離岸風力發電計畫環境影響說明書」。
63. 福海風力發電股份有限公司籌備處(2013),「福海離岸風力發電計畫(第一期)環境影響說明書」。
64. 福海風力發電股份有限公司(2016),「福海彰化離岸風力發電計畫環境影響說明書」。
65. 內政部營建署(2011),「建築物耐震設計規範及解說」。
66. 林朝宗、蘇品如、游能悌、吳文隆、楊智堯、謝文誠、許智翔(2012),「臺北盆地松山層地質模型研究初探」,中華技術,第93期,頁136-148。
67. 張倖偉(2017),「彰濱外海離岸風場地工模型雛形建立」,碩士論文,國立成功大學水利及海洋工程研究所,臺南。
68. 張欽森 張上君 李信志 劉新達(2018),「離岸風場區塊開發海域環境建構計畫(1/3)」成果報告,經濟部能源局。
69. 張欽森 張上君 李信志 林俶寬 劉新達(2017),「離岸風場區塊開發海域環境建構計畫(1/4)」成果報告,經濟部能源局。
70. 郭玉樹(2016) 「離岸風場場址調查與環境評估-地質調查與評估技術」,科技部能源專題研究計畫。
71. 郭玉樹、謝正倫,(2014)能源國家型科技計畫-離岸風力發電主軸研究計畫;之程結構基礎及載重分項-C6離岸風機耐震抗颱基礎設計與驗證方法成果報告,國科會。
72. 郭玉樹*、曾姿郡、Florian tom Woerden (2014). 「海域大地調查於離岸風場規劃、 設計與建置期間之角色」, 地工技術, 2014年12月號, No. 142, pp.51-58。
73. 財團法人國家實驗研究院台灣海洋科技研究中心(2012)「彰濱海域地質鑽探 試驗分析工作報告書」
74. 許哲維(2018) 「地工設計參數不確定性對大口徑單樁基礎穩定性之研究」,碩士論文,國立成功大學水利及海洋工程研究所,臺南。
75. 梁師俊(2010) 「基於虛擬鑽孔的工程地質參為剖切的實現」地理與地理信息科學, Vol 26, No. 1, pp11-14
76. 郭玉樹(2018) 「離岸風機水下資處設計暨維護決策資料庫與展示平台開發」,期中報告,科技部。
校內:2024-08-01公開