簡易檢索 / 詳目顯示

研究生: 陳彥瑋
Chen, Yen-Wei
論文名稱: 磷化砷銦鎵異質結構場效電晶體與檢光二極體之研究
Investigation of InGaAsP Heterostructure Field-effect Transistors and Photodiodes
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 155
中文關鍵詞: 磷化砷銦鎵異質結構場效電晶體檢光二極體
外文關鍵詞: InGaAsP, Heterostructure field-effect transistor, photodiode
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們成功利用低壓有機金屬化學氣相沉積法成長並研製一系列磷化砷銦鎵異質結構場效電晶體及檢光二極體。在磊晶晶膜成長上,我們獲得高品質及高均勻性之晶膜材料;在元件製程上,我們所研製之元件皆具有良好之直流及交流操作特性。而這些良好特性驗証了我們所研製之元件,相當適合應用在無線微波通訊及光纖通訊上。磷化砷銦鎵材料與磷化銦基板具有極佳的晶格匹配,更值得注意的,磷化砷銦鎵材料相對應波長含蓋可從920至1650(In0.53Ga0.47As)nm(能隙可從1.35至0.75eV),可藉由改變不同組成而獲得不同應用需要之材料,並已在許多相關光電及光纖通訊應用上獲得極佳之特性表現。
    首先,我們以低壓有機金屬化學氣相沉積法進行磊晶晶膜材成長研究,同時利用一系列之量測分析以確認成長晶膜之優劣。由於有機金屬化學氣相沉積機台之反應腔為一行星式之設計,使得晶片成長時具有自轉及公轉的功能,進行改善晶膜成長之均勻性,其中在本研究中,晶膜厚度均勻性可控制在百分之五;晶膜晶格不匹配可控制在500ppm;以二吋晶圓四元磷化砷銦鎵材料其波長均勻性可控制在5nm。此外,在砷化銦鎵材料其電子移動率可高於12000cm-2/v•s及背景濃度可低達7x1014 cm-3,而這些研究結果已可與其他著名研究相媲美。由於這些高品質之磊晶材料使得在後續元件成長及製程上獲得相當大的幫助。
    接著,我們研製具不同結構之磷化砷銦鋁/砷化銦鎵異質結構場效電晶體,探討不同通道結構對元件特性上之影響及差異,實驗結果顯示,漸變式通道結構(GCHEMT)在元件線性度可獲得相當不錯的表現,閘極電壓擺幅可達0.9V,而擬晶通道結構(PCHEMT)直流增益可達302mS/mm,此外,對擬晶通道結的構蕭基層薄化以獲得增強型操作模式之特性,並控制閘極偏壓來改變閘極與通道間之電場,相電場夠大時,將使得通道裡的載子受到吸引進而穿隧至閘極,導致電流下降及負微分電阻的產生。摻雜通道場效電晶體結構(DCFET)不僅具有良好的高溫度操作特性,同時元件具高直流增益(291mS/mm)、高閘極擺幅(1.05V)及高崩潰電壓(20.2V)等良好特性;此外,單原子層摻雜高電子移動率場效電晶體(DDHEMT)加入V型漸變式摻雜設計,不僅具有極佳的直流增益(384mS/mm)及飽和電流(720mA/mm),同時在高頻響應上亦有不錯的表現。我們所製作之元件皆具有相當不錯的直流及交流特性,此一結果代表了我們所研製之元件具有在微波通訊應用上的價值。
    最後,我們研製一系列具不同覆蓋層之磷化砷銦鋁/磷化銦檢光二極體。實驗結果得知,高品質In0.53Ga0.47As 及 In0.66Ga0.34As0.73P0.27吸收層材料背景濃度可低達4.5x1013 及2.4x1014 cm-3,此外,以能隙較大之材料作為覆蓋層將獲得較低之暗電流,因此,在以磷化銦做為覆蓋層的結構上獲得最低之暗電流特性(4.2x10-7A/cm2),同時,由於覆蓋層具較大之能隙,相對減少覆蓋層之吸光效果,使得入射之光源更容易被吸光層所吸收,進而獲得較佳之元件特性。

    In this dissertation, we have successfully fabricated and investigated InP-based InGaAsP heterostructure field-effect transistors (HFET's) and p-i-n photodiodes (PIN-PD's) grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD). The characteristics of InAlAs/InGaAsP HFET's and InGaAsP/InP PIN-PD's are measured and discussed.
    We describe the properties of the planetary MOCVD reactor. The growth parameters and characteristics of the epi-layers are discussed and analyzed. A series of specialized measurements, including double-crystal x-ray diffraction (DCXRD), photoluminescence (PL), Hall measurement, electrochemical capacitance-voltage (ECV) profile, Lehighton and Surface-scan are used to qualify material characteristics. Improved material uniformities and qualities are demonstrated. Thickness uniformity of the epi-layer within 5%, wavelength uniformity of the quaternary InxGa1-xAsyP1-y layer within 5 nm and lattice mismatch of epi-layer kept within 500 ppm are achieved. Furthermore, the In0.53Ga0.47As layer background concentration lower than 7x1014 cm-3 and the electron mobility higher than 12000 cm-2/v•s are achieved.
    InAlAs/InxGa1-xAsyP1-y high electron transistors (HEMT's) with various InxGa1-xAsyP1-y channels were demonstrated. Improved linearity characteristics are achieved in the structures utilizing compositionally graded InxGa1-xAs channel and composite InxGa1-xAsyP1-y triple channels due to the improved confinement and transport characteristics. By thinning the InAlAs barrier layer of PCHEMT, enhancement-mode operation is obtained. As the gate bias is sufficiently large, the device exhibits a pronounced N-shaped NDR behavior since hot electrons tunnel from the InGaAs channel layer to the gate electrode. On the other hand, an InAlAs/InGaAs doped channel field-effect transistor (DCFET) was fabricated to improve device linearity, current drivability and breakdown voltage. Experimentally, high transconductance, high current drivability, high linearity, low leakage current and high breakdown voltage are achieved due to the doped InGaAs channel, undoped InAlAs Schottky layer and good carrier confinement. Moreover, a delta-doped InAlAs/InGaAs HEMT with a graded InxGa1-xAs V-shaped channel (DDHEMT) is fabricated. The delta-doping carrier supply layer and graded V-shaped channel are used to enhance two-dimension electron gas (2DEG) density and mobility. Moreover, the improved carrier confinement in the channel is achieved. Experimentally, improved transport performance, including high transconductance, high current drivability, high linearity and high breakdown is achieved.
    Finally, a series of planar InGaAs(P)/InP PIN-PD's were fabricated and demonstrated. High-quality and uniformity of the epi-layers are obtained. The measured concentrations of In0.53Ga0.47As and In0.66Ga0.34As0.73P0.27 (1.4 PQ) absorption layers are as low as 4.5x1013 and 2.4x1014 cm-3, respectively. Experimentally, the dark current is significantly reduced in the structure utilizing a wider-band-gap material of quaternary InxGa1-xAsyP1-y as a cap layer to reduce the device surface leakage current and dark current. In addition, the wide-band-gap cap layer may also reduce the incident light absorption in the cap layer, thus improving device responsivity. The PIN-PD's with a wide-band-gap InP cap layer in the InxGa1-xAsyP1-y material system can be expected to further improve device performances.

    Abstract Table Captions Figure Caption Chapter 1 Introduction 1 Chapter 2 Epitaxial Growths and Material Characterizations 5 2.1 Introduction 5 2.2 Planetary MOCVD reactor 7 2.3 Material characterizations 8 2.3.1 Double-crystal x-ray diffraction (DCXRD) 8 2.3.2 Photoluminescence (PL) 9 2.3.3 Hall measurement 10 2.3.4 Electrochemical capacitance-voltage (ECV) 11 2.3.5 Other techniques 13 2.4 Specific materials 13 2.4.1 InGaAsP/InP material 13 2.4.2 InAlAs/InP material 15 Chapter 3 InAlAs/InGaAsP Heterostructure Field effect Transistors 17 3.1 Introduction 17 3.2 Device fabrication procedure 17 3.2.1 Sample orienting 18 3.2.2 Mesa isolation 18 3.2.3 Source and drain metallization 18 3.2.4 Gate schottky contact 19 3.3 InAlAs/InxGa1-xAs/InAlAs HEMT's with various InxGa1-xAs channels 19 3.3.1 Devices design and growth parameters 19 3.3.2 Experimental results and discussions 20 3.4 InAlAs/InGaAsP/InAlAs triple channels HEMT 23 3.4.1 Devices design and growth parameters 24 3.4.2 Experimental Results 24 3.5 Enhancement-mode InAlAs/InGaAs TRST-HEMT 26 3.5.1 Device fabrication 27 3.5.2 Experimental results and discussions 28 3.6 InAlAs/InGaAs/InAlAs doped channel HFET 30 3.6.1 Devices design and growth parameters 30 3.6.2 Experimental Results 30 3.7 InAlAs/InxGa1-xAs/InAlAs delta-doped HEMT with graded V-shaped InxGa1-xAs channel 33 3.7.1 Devices design and growth parameters 33 3.7.2 Experimental results and discussions 34 3.7.3 Sub-micron gate length DDHEMT 36 3.8 Summary 37 Chapter 4 InGaAsP Heterostructure p-i-n Photodiodes 39 4.1 Introduction 39 4.2 Device fabrication procedure 40 4.2.1 Diffusion mask deposition 41 4.2.2 P-type region diffusion 41 4.2.3 Contacts metallization 41 4.3 Devices design and growth parameters 41 4.4 Experimental results and discussions 42 4.5 Summary 45 Chapter 5 Conclusions and Prospects 47 5.1 Conclusions 47 5.2 Prospects 48 References 50

    [1] Y. Umeda, T. Enoki, K. Arai and Y. Ishii,"High-performance InAlAs/InGaAs HEMTs and their application to 400 GHz monolithic amplifier," Proc. Int. Conf. Solid State Devices and Materials, Tsukuba, Japan, p.573, 1992.
    [2] T. Kagawa, Y. Kawamura and H. Iwamura, "InGaAsP-InAlAs superlattice avalanche photodiode," IEEE J. Quan. Electron., Vol. 28, p. 1419, 1992.
    [3] R. Gaska, J. Deng and M. S. Shur, “Low-threshold AlGaN-GaN heterostructure field effect transistors for digital application,”IEE Electron. Lett.,Vol.34, p.2367, 1998.
    [4] H. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, “High fmax carbon-doped based InP/InGaAs heterojunction bipolar transistors grown by MOCVD,” IEE Electron. Lett., Vol.32, p.1415, 1996.
    [5] J. J. Hsieh, J. A. Rossi and J. P. Donnelly, "Room temperature CW operation of GaInAsP/InP double heterostructure diode lasers emitting at 1.1 um,”Appl. Phys. Lett., Vol.29, p.709, 1976.
    [6] S. Nakamura, T. Mukai and M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,”Appl. Phys. Lett., Vol.64, p.1687, 1994.
    [7] A. Lepore, M. Levy, H. Lee, E. Kohn, D. Radulescu, R. Tiberio, P. Tasker and L. Eastman, “Fabrication and performance of 0.1-um gate-length AlGaAs/GaAs HEMTs with unity current gain cutoff frequency in excess of 110 GHz,” IEEE Trans. Electron Devices, Vol.35, p.2441, 1988.
    [8] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, Vol.39, p.2676, 1992.
    [9] J. I. Song, C. Caneau, K. B. Chough and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage,” IEEE Electron Device Lett., Vol.15, p.10, 1994.
    [10] D. Pavlidis, “MOVPE material growth and application to InP based electronic devices,” Proc. 10th Int. Conf. InP and Related Materials, Tsukuba, Japan, p.477, 1998.
    [11] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders and J. J. Hsieh, “High-performance uncooled 1.3-um AlGaInAs/InP strained-layer quantum-well lasers for subscriber loop applications,” IEEE J. Quan. Electron., Vol.30, p.511, 1994.
    [12] J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan and S. Ray, "High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.98 A/W,” IEEE Photon. Technol. Lett., Vol.4, p.1241, 1992.
    [13] K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui, T. Mimura and S. Hiyamizu, "Ultrahigh-speed pseudomorphic InGaAs/InAlAs HEMTs with 400 GHz cutoff frequency,“ IEEE Electron Device Lett., Vol.22, p.565, 2001.
    [14] K. Takahata, Y. Muramoto, H. Fukano, K. Kato, A. Kozen, O. Nakajima and Y. Matsuoka, “46.5 GHz bandwidth monolithic receiver OEIC consisting of a waveguide p-i-n photodiode and a HEMT distributed amplifier,” IEEE Photon. Technol. Lett., Vol.10, p.1150, 1998.
    [15] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, D. Ritter, R. A. Hamm, M. B. Panish and G. J. Qua, “A 10 Gbit/s OEIC photo-receiver using InP/InGaAs heterojunction bipolar transistors,” IEE Electron. Lett., Vol.28, p.466, 1992.
    [16] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng, and I. desida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, Vol.39, p.2676, 1992.
    [17] C. R. Abernathy, F. Ren, S. J. Pearton, T. R. Fullowan, R. K. Montgomery, P. W. Wisk, J. R. Lothian, P. R. Smith and R. N. Nottenburg, “Growth of GaAs/AlGaAs HBTs by MOMBE(CBE),” J. Cryst. Growth, Vol.120, p.234, 1992.
    [18] M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu and A. Kozachi, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol.52, p.117, 1988.
    [19] A. W. Nelson, W. J. Devlin, R. E. Hobbs, C. G. D. Lenton and S. Wong, "High-power, low-threshold BH lasers operation at 1.25 um grown entirely by
    MOVPE,” IEE Electron. Lett., Vol.21, p.888, 1985.
    [20] H. P. Meier, R. F. Broom, P. W. Epperlein, S. Hausser, A. Jakubowicz and W. Walter, “Growth investigations of 1.3 um GaInAsP/InP MQW laser diodes grown by chemical beam epitaxy,” J. Cryst. Growth, Vol.127, p.165, 1993.
    [21] T. F. Kuech, P. J. Wang, M. A. Tischler, R. Potemski, G. J. Scilla and F. Cardone, “The control and modeling of doping profiles and transients in MOVPE growth,“ J. Cryst. Growth, Vol.93, p.624, 1988.
    [22] M. R. Leys, “Fundamental growth kinetics in MOMBE/CBE, MBE and MOVPE,” J. Cryst. Growth, Vol.209, p.225, 2000.
    [23] K. F. Jensen, D. I. Fotiadis and T. J. Mountziaris, “Detailed models of MOVPE process,” J. Cryst. Growth, Vol.1, p.107, 1991.
    [24] M. Ikeda, S. Kojima and Y. Kashiwayanagi, "Uniform growth of GaAs by MOCVD on multi-wafers,” J. Cryst. Growth, Vol.77, p.157, 1986.
    [25] N. Nordell, S. G. Andersson and G. Landgren, ”Design and performance of a new reactor for MOVPE growth of extremely uniform layers,” J. Electrochem. Soc., Vol.139, p.583, 1992.
    [26] S. P. Watkins, H. D. Cheung, G. Knight and G. Kelly, “Effect of interfacial dopant layer on transport properties of high purity InP,” Appl. Phys. Lett., Vol.68, p. 1960, 1996.
    [27] H. M Manasevit and W. I. Simpson, J. Electrochem Soc., Vol. 12, p.156, 1968.
    [28] C. Y. Chang, F. Kai, “GaAs high-speed devices,” John Wiley& Sons, Inc., Sec. 3.3, 1994.
    [29] R. Beccard, M. Deufel, H. Protzmann, D. Schmitz and H. Juergensen, "Multiwafer MOVPE growth (15x2” wafers) of InP based materials for long wavelength optoelectronics and reactor design improvements for high throughput,” Proc. 8th European Workshop on MOVPE, Berlin, Germany, G13, 1997.
    [30] W. Asawamethapant, M. Sugiyama, Y. Shimogaki and Y. Nakano, “Longitudinal distribution analysis of InP growth in a horizontal MOVPE reactor for improved film quality,” Proc. 11th Int. Conf. InP and Related Materials, Davos, Switzerland, p.55, 1999.
    [31] H. Compton, “The Intensity of X-Ray Reflection, and the Distribution of the Electrons in Atoms,” Phys. Rev., Vol.9, p.29, 1917.
    [32] G. Bauer, W. Richter, “Optical characterization of epitaxial semiconductor layers,” Springer press, 1996.
    [33] Bede Inc., Rocking Curve Analysis by Dynamical Simulation (RADS), 1993.
    [34] W. Lin, M. C. Wang, J. S. Su, S. C. Ko, T. A. Dai, J. Y. Su, H. H. Shis, J. G. Chen, C. C. Lin and Y. K. Tu, “Growth and characterization of InGaAlAs strain compensated quantum-wells for high performance 1.3 um wavelength lasers,” National Conf. on 1995 EDMS, Kaoshiung, Taiwan R. O. C., p.245-250, 1995.
    [35] R. A. Stradling, P. C. Klipstein, “Growth and characterization of semiconductors,” Adam Hilger press, Bristol, Great Britain, 1991.
    [36] P. Y. Yu, M. Cardona, “Fundamentals of semiconductors,” 2nd Edition, Springer press, 1999.
    [37] V. Swaminathan, A. T. Macrander, “Materials aspects of GaAs and InP based structures,” Prentice Hall, Sec. 4.3, 1991.
    [38] R. Kinder, A. Nemcsics, R. Harman, F. Riesz and B. Pecz, “Carrier profiling of a heterojunction bipolar transistor and p-i-n photodiode structures by electrochemical C-V technique,” Phys. Stat. Sol. Vol.175, p.631, 1999.
    [39] L. Hulenyi and R. Kinder, “Characterization of the silicon-electrolyte interface,” 43rd International Scientific Colloquium, Technical University of Ilmenau, September 21-24, 1998.
    [40] P. Blood, “Capacitance-voltage profiling and the characterisation of III-V semiconductors using electrolyte barriers,” Semicond. Sci. Technol., Vol.1, p.7, 1986.
    [41] R. Kinder and D. Schipanski, “Dopant profiles of III-V semiconductors by the electrochemical C-V technique,” 43rd International Scientific Colloquium, Technical University of Ilmenau, September 21-24, 1998.
    [42] H. Kamei and H. Hayashi, “OMVPE growth of GaInAs/InP and GaInAs/GaInAsP quantum wells,” J. Cryst. Growth, Vol.107, p.567, 1991.
    [43] M Tabuchi, N. Yamada, K. Fujibayashi, Y. Takeda and H. KAMEI, “Group-V atoms exchange due to exposure of InP surface to AsH3 (+PH3) revealed by x-ray CTR scattering,” J. Electron. Mater., Vol.25, p.671, 1996.
    [44] C. A. Larsen and G. B. Stringfellow, ”Decomposition kinetics of OMVPE precursors,” J. Crys. Growth, Vol.75, p.247, 1986.
    [45] C. A. Larsen, N. I. Buchan and G. B. Stringfellow, “Mass spectrometric studies of phosphine pyrolysis and OMVPE growth of InP,” J. Crys. Growth, Vol.85, p.148, 1987.
    [46] S. J. Bass, S. J. Barnett, G. T. Brown, N. G. Chew, A. G. Cullis, A. D. Pitt and M. S. Skolnick, “Effect of growth temperature on the optical, electrical and crystallographic properties of epitaxial indium gallium arsenide grown by MOCVD in an atmospheric pressure reactor,” J. Crys. Growth, Vol.79, p.378, 1986.
    [47] M. Razeghi and J. P. Duchemin, “Low pressure-MOCVD growth of GaInAs-InP heterojunction and superlattices,” J. Vac. Sci. Technol. B1, Vol.2, p.262, 1983.
    [48] C. P. Kuo, R. M. Cohen, K. L. Fry and G. B. Stringfellow, “Characterization of GaInAs with TMIn,” J. Electron. Materials, Vol. 14, p.231, 1985.
    [49] W. T. Tsang, A. H. Dayem, T. H. Chiu, J. E. Cunningham, E. F. Schubert, J. A. Ditzenberger, J. Shah, J. L. Zyskind and N. Tabatabaie, “Chemical beam epitaxial growth of extremely high quality InGaAs on InP,” Appl. Phys. Lett., Vol.49, p. 170, 1986.
    [50] M. D. Scott, A. G. Norman and R. R. Bradley, “MOVPE of AlInAs HEMT structures,” J. Crys. Growth, Vol.107, p.932, 1991.
    [51] M. D. Scott, A. H. Moore, A. J. Moseley and R. H. Wallis, Ga0.28In0.72As/Al0.28In0.72As 2 um photodiode heterostructures prepared by atmospheric pressure MOCVD,” J. Crys. Growth, Vol.77, p.606, 1986.
    [52] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol.41, p.456, 1994.
    [53] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “ The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs”, IEEE Trans. Electron Devices, Vol.48, p.560, 2001.
    [54] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. H, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” IEE Electron. Lett., Vol.32, p.2095, 1996.
    [55] R. J. Malik, L. M. Lunardi, J. F. Walker, and R. W. Ryan, “A planar doped 2D-hole gas base AlGaAs/GaAs hetrojunction bipolar transistor grown by molecular beam epitaxy,” IEEE Electron. Dev. Lett., Vol.9, p.7, 1988.
    [56] V. Vertiatchikh, L. F. Eastman, W. J. Schaff, and T. Prunty, “Effect of surface passivation of AlGaN/GaN heterostructure field-effect ransistor,” IEE Electronics Lett., vol.38, p.388-389, 2002.
    [57] Y. S. Lin, H. M. Shieh, W. C. Hsu, J. S. Su, J. Z. Huang, Y. H. Wu, and S. D. Ho, “Electrical characteristics of heterostructure-emitter bipolar transistors using spacers layers,” J. Vac. Sci. Technol. B, Vol.16, p.958, 1998.
    [58] M. Chertouk, M. Dammann, K. Kohler, and G. Weimann, “0.15 μm passivated InP-based HEMT MMIC technology with high thermal stability in hydrogen ambient,” IEEE Electron Device Lett., Vol.21, p.97, 2000.
    [59] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory and Tech., Vol.48, p.1313, 2000.
    [60] S. S. Lu, and C. C. Hung, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., Vol.13, p.214, 1992.
    [61] J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” IEE Electron. Lett., Vol.32, p.1720, 1996.
    [62] O. S. A. Tang, K. H. G. Duh, S. M. J. Liu, P. M. Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “Design of high-power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE J. Solid-State Circuits, Vol.32, p.1326, 1997.
    [63] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol.21, p.524, 2000.
    [64] W. P. Hong, R. Bhat, J. R. Hayes, C. Nguyen, and G. K. Chang, High-Breakdown, High-Gain InAlAs/ InGaAsP Quantum-Well HEMT’s,” IEEE Electron Device Lett., Vol.12, p.559, 1991.
    [65] D. Xu, T. Suemitsu, J. Osaka, Y. Umeda, Y. Yamane, Y. Ishii, T. Ishii, and T. Tamamura, “An 0.03-um Gate-Length Enhancement-Mode InAlAs/InGaAs/InP MODFET’s with 300 GHz ft and 2 S/mm Extrinsic Transconductance,” IEEE Electron Device Lett., Vol.20, p.206, 1999.
    [66] H. Maher, J. Decobert, A. Falcou, M. L. Pallec, G. Post, Y. I. Nissim, and A. Scavennec, “A Triple Channel HEMT on InP (Camel HEMT) for Large-Signal High-Speed Applications, “IEEE Trans. Electron. Devices, Vol.46, p.32, 1999.
    [67] A. M. Kusters, A. Kohl, R. Muller, V. Sommer, and K. Heime, ”Double-Heterojunction Lattice-Matched and Pseudomorphic InGaAs HEMT with Delta-Doped InP Supply Layers and p-InP Barrier Enhancement Layer Grown by LP-MOVPE,” IEEE Electron Device Lett., Vol.14, p.36, 1993.
    [68] U. K. Mishra, A. S. Brown, L. M. Jelloian, L. H. Hackett, M. J. Delaney, “High-performance submicrometer AlInAs-GaInAs HEMT’s,” IEEE Electron Device Lett., Vol.9, p.41, 1988.
    [69] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu, and C. G. Liang, “InP Based Enhancement Mode Pseudomorphic HEMT with Strained In0.45Al0.55As Barrier and In0.75Ga0.25As Channel Layers,” IEEE Electron Device Lett., Vol.21, p.200, 2000.
    [70] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. Huang, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” IEE Electron Lett., Vol.32, p.2095, 1997.
    [71] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, "High breakdown voltage symmetric double delta-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor," Appl. Phys. Lett., Vol.75, p.1616, 1999.
    [72] C. S. Lee, W. C. Hsu, H. M. Shieh, J. S. Su, S. Y. Jain, and W. Lin, “Novel dual-mode In0.34Al0.66As.85Sb0.15/In0.75Ga0.25As/InP inverted d-doped heterostructure field-effect transistor,” Soild-State Electronics, Vol.44, p.1635, 2000.
    [73] K. H. Yu, W. L. Chang, S. C. Feng, and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor, ”Solid-State Electron, Vol. 44, p.2069, 2000.
    [74] M. H. Somerville, J. A. Alamo, W. Hoke, “Direct Correlation Between Impact Ionization and the Kink Effect in InAlAs/InGaAs HEMT’s,”IEEE Electron Device Lett., Vol.17, p.473, 1996.
    [75] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, “Impact ionization and light emission in high-power pseudomorphic AlGaAs/InGaAs HEMT’s” IEEE Trans. Electron. Devices, Vol.40, p.1211, 1993.
    [76] C. R. Bolognesi, M. W. Dvorak, D. H. Chow, “Impact ionization suppression by quantum confinement: Effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET's,”IEEE Trans. Electron Devices, Vol.46, p.826, 1999.
    [77] E. Zanoni, M. Manfredi, S. Bigliardi, A. Paccanella, P. Pisoni, C. Tedesco, and C. Canali, “Impact ionization and light emission in AlGaAs/GaAs HEMT's,” IEEE Trans. Electron. Devices, Vol.39, p.1849, 1992.
    [78] Y. J. Li, J. S. Su, Y. S. Lin, and W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor,” Superlattices and Microstructures, Vol.28, p.47, 2000.
    [79] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMT’s Utilizing Low Temperature AlInAs Buffers Grown by MBE,” IEEE Electron Device Lett., Vol.10, p.565, 1989.
    [80] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the Improvement of Gate Voltage Swings in Delta-Doped GaAs/InGaAs/GaAs Pseudomorphic Heterostructures,” IEEE Trans. Electron. Devices, Vol.40, p.1630, 1993.
    [81] W. P. Hong, R. Bhat, J. R. Hayes, C. Nguyen, and G. K. Chang, High-breakdown, high-gain InAlAs/InGaAsP quantum-well HEMTs,”IEEE Electron Device Lett., Vol.12, p.559, 1991.
    [82] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. C. Chen, “Low Dark Current InGaAs(P)/InP p-i-n Photodiodes,” Jpn. J. Appl. Phys., Vol.42, p.4249, 2003.
    [83] H. Maher, J. Decobert, A. Falcou, M. L. Pallec, G. Post, Y. I. Nissim, and A. Scavennec, “A triple channel HEMT on InP (Camel HEMT) for large-signal high-speed applications,” IEEE Trans. Electron Devices, Vol.46, p.32, 1999.
    [84] Y. S. Lin, W. C. Hsu, H. M. Shieh, and C. Y. Yeh, “In0.34Al0.66As0.85Sb0.15/d(n+)-InP heterostructure field-effect transistors,” Appl. Phys. Lett., Vol.76, p.3124, 2000.
    [85] W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications, ”IEEE Trans. Electron. Devices, Vol.47, p.1953, 2000.
    [86] C. L. Wu and W. C. Hsu, “Enhanced resonant tunneling real-space transfer in delta-doped GaAs/InGaAs gated dual-channel transistors grown by MOCVD,”IEEE Trans. on Electron Devices, Vol.43, p.207, 1996.
    [87] K. J. Chen and M. Yamamoto, “Frequency multipliers using InP-based resonant-tunneling high electron mobility transistors,” IEEE Electron Device Lett., Vol.17, p.235, 1996.
    [88] Y. K. Fang, C. R. Liu, K. H. Chen, and J. D. Hwang, “A silicon double switching inversion-controlled switch for multiple-valued logic applications,” IEEE Trans. on Electron Devices, Vol.40, p.918, 1993.
    [89] B. Vinter and A. Tardella, “Tunneling transfer field-effect transistor: A negative transconductance device,” Appl. Phys. Lett., Vol.50, p.410, 1987.
    [90] W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol.64, p.2685, 1994.
    [91] P. M. Mensz, S. Luryi, A. Y. Cho, D. L. Sivco, and F. Ren, “Real-space transfer in three terminal InGaAs/InAlAs/InGaAs heterostructure devices,” Appl. Phys. Lett., Vol.56, p.2563, 1990.
    [92] A. A. Grinberg, A. Kastalsky, and S. Luryi, “Theory of hot-electron injection in CHINT/NERFET,” IEEE Trans. Electron Devices, Vol.34, p.409, 1987.
    [93] W. C. Liu, J. H. Tasi, W. S. Lour, L. W. Laih, K. B. Thei, and C. Z. Wu, “Multiple negative-differential-resistance (NDR) of InGaP/GaAs heterostructure-emitter bipolar trasistor (HEBT),” IEEE Electron Device Lett., Vol.17, p.130, 1996.
    [94] J. S. Su, W. C. Hsu, Y. S. Lin, W. Lin, “Controllable Drain Cut-in Voltage with Strong Negative Differential Resistance in GaAs/InGaAs Real-Space Transfer Heterostructure,” Appl. Phys. Lett., Vol.70, p.1002, 1997.
    [95] L. W. Laih, S. Y. Cheng, K. W. Lin, P. H. Lin, J. Y. Chen, W. C. Wang, and W. C. Liu, “Investigation of step-doped-channel negative-differential-resistance transistor,” Jpn. J. Appl. Phys., Vol. 36, p.2617, 1997.
    [96] K. Hess, K. Morkoc, H. Shichijo and B. G. Streetman, “Negative differential resistance through real-space electron transfer,” Appl. Phys. Lett., Vol.35, p.469, 1976.
    [97] J. Laskar, A. A. Ketterson, J. N. Baillargeon, T. Brock, I. Adesida, K. Y. Cheng and J. Kolodzey, “Gate-controlled negative differential resistance in drain current characteristics of AlGaAs/InGaAs/GaAs pseudomorphic MODFETs,”IEEE Electron Device Lett., Vol.10, p.528, 1989.
    [98] J. Laskar, J. M. Bigelow, J. P. Leburton and J. Kolodzey, “Experimental and theoretical investigation of the DC and high-frequency characteristics of the negative differential resistance in pseudomorphic AlGaAs/InGaAs/GaAs MODFET's,” IEEE Trans. Electron. Devices, Vol.39, p.257, 1992.
    [99] W. S. Lour, and C. Y. Lia, “Comparisons between mesa-gate and airbridge-gate AlGaAs/InGaAs doped-channel field-effect transistors,”Semicond. Sci. Technol., Vol.13, p.796, 1998.
    [100] J. A. D. Alamo, and T. Mizutani, “An InAlAs/n+-InGaAs MISFET with a heavily doped channel,” IEEE Electron Device Lett., Vol.8, p.534, 1987.
    [101] Y. S. Lin, T. P. Sun and S. S. Lu, “GaInP/InGaAs/GaAs pseudomorphic doped-channel FET with high-current density and high-breakdown voltage,”IEEE Electron Device Lett., Vol. 18, p.150, 1997.
    [102] M. T. Yang, and Y. J. Chan, “Device linearity improvement by Al0.3Ga0.7As/In0.2Ga0.8As heterostructure doped-channel FET’s,” IEEE Electron Device Lett., Vol.16, p.33, 1995.
    [103] K. H. Yu, W. L. Chang, S. C. Feng, and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor,” Solid-State Electron., Vol.44, p.2069, 2000.
    [104] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-channel field-effect transistor (SCDCFET),” IEE Electron. Lett., Vol.33, p.98, 1997.
    [105] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs doped-channel field-effect transistors (DCFET's),” IEEE Trans. Electron Devices, Vol.42, p.1745, 1995.
    [106] H. F. Chau, D. Pavlidis, J. L. Chraux, and J. Graffuil, “Studies of dc, low frequency, and microwave characteristics of uniform and step-doped GaAs/AlGaAs HEMT's,” IEEE Trans. Electron Devices, Vol.36, p.2288, 1989.
    [107] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, Vol.48, p.1290, 2001.
    [108] K. W. Kim, H. Tian, and M. A. Littlejohn, “Analysis of delta-doped and uniformly doped AlGaAs/GaAs HEMT’s by ensemble Monte Carlo simulations,”IEEE Trans. Electron Devices, Vol.38, p.1737, 1991.
    [109] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys. Lett., Vol.38, p.L1385, 1999.
    [110] C. L. Wu, W. C. Hsu, H. M. Shieh and M. S. Tsai, “An improved inverted delta-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD,” IEEE Electron Device Lett., Vol.15, p.330, 1994.
    [111] C. L. Wu, W. C. Hsu, H. M. Shieh, and W. C. Liu, 1994, " Mobility enhancement in double delta-doped GaAs/InxGa1-xAs/GaAs pseudomorphic structures by grading the heterointerfaces," Appl. Phys. Lett., Vol.64, p.3027, 1994.
    [112] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET's,” IEEE Trans. Electron Devices, Vol.42, p.804, 1995.
    [113] C. Lien, Y. Huang, H. Chien, and W. Wang, “Charge control model of the double delta-doped quantum-well field-effect transistor,” IEEE Trans. Electron Devices, Vol.41, p.1351, 1994.
    [114] C. S. Lee, W. C. Hsu, H. M. Shieh, J. S. Su, “A Novel Dual-Mode InAlAsSb/InGaAs/InP Inverted δ-Doped Heterostructure Field-Effect Transistor”, Solid-State Electron, Vol. 44, p.1635, 2000.
    [115] C. S. Lee, W. C. Hsu, Y. W. Chen, Y. C. Chen and H. M. Shieh, “High-Temperature Breakdown Characteristics of delta-doped In0.49Ga0.51P/GaAs/In0.25Ga0.75As/AlGaAs High Electron Mobility Transistor”, Jpn. J. Appl. Phys. Lett., vol.39, p.1029, 2000.
    [116] S. Miura, H. Kuwatsuka, T. Mikawa, and O. Wada, “Planar embedded InP/GaInAs p-i-n photodiode for very high-speed operation,” J. Lightwave Technol. Vol.5, p.1371, 1987.
    [117] K. S. Park, D. K. Oh, H. M. Kim, and K. E. Pyun, “Compact photonic integrated circuit chip with low crosstalk for bidirectional transceivers,” IEE Electron Lett., Vol.34, p.79, 1998.
    [118] N. Emeis, M. Schier, L. Hoffmann, H. Heinecke, and B. Baur, “High speed waveguide-integrated photodiodes grown by metal organic molecular beam epitaxy,” IEE Electron Lett., Vol.28, p.344, 1992.
    [119] N. Susa, H. Nakagome, O. Mikami, H. Ando, and H. Kanbe, “New InGaAs/InP avalanche photodiode structure in the 1-1.6 m wavelength region,” IEEE J. Quan. Electron.,Vol.16, p.864, 1980.
    [120] T. P. Lee, C. A. Burrus, and A. G. Dentai, “ InGaAs/InP p-i-n photodiodes for lightwave communication at the 0.95-1.65 um wavelength,” IEEE J. Quan. Electron.,Vol.17, p.232, 1981.
    [121] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. L. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quan. Electron., Vol.36, p.333, 2000.
    [122] S. R. Forrest, I. Camlibel, O. K. Kim, H. J. Stocker, and J. R. Zuber, “Low dark-current, high efficiency planar InGaAs/InP pin photodiodes,” IEEE Electron Device Lett., Vol.2, p.283, 1981.
    [123] P. Berthier, L. Giraudet, A. Scavennec, D. Rigaud, M. Valenza, J. I. Davies, and S. W. Bland, “InGaAsP channel HFET’s on InP for OEIC applications,” J. Lightwave Technol., Vol.12, p.2131, 1994.
    [124] N. Shimizu, K. Murata, A. Hirano, Y. Miyamoto, H. Kitabayashi, Y. Umeda, T. Akeyoshi, T. Furuta, and N. Watanbe, “40 Gbit/s monolithic digital OEIC composed of unitravelling-carrier photodiode and InP HEMTs,” IEE Electron Lett., Vol.36, p.1220, 2000.
    [125] Y. Muramoto, K. Kato, Y. Akahori, M. Ikeda, A. Kozen, and Y. Itaya, “High-speed monolithic receiver OEIC consisting of a waveguide p-i-n photodiode and HEMT’s,” IEEE Photon. Technol. Lett., Vol.7, p.685, 1995.
    [126] M. J. Kim, D. K. Kim, S. J. Kim, and M. B. Das, “Determination of bit-rate and sensitivity limits of an optimized p-i-n/HBT OEIC receiver using SPICE simulations,” IEEE Trans. Electron Devices, Vol.44, p.551, 1997.
    [127] M. Yung, J. Jensen, R. Walden, M. Rodwell, G. Raghavan, K. Elliott, and W. Stanchina, “Highly integrated InP optical receivers,” IEEE J. Solid-State Circuits, Vol.34, p.219, 1999.
    [128] M. Gallant, N. Puetz, A. Zemel, and F. R. Shepherd, “Metalorganic chemical vapor deposition InGaAs p-i-n photodiodes with extremely low dark current,” Appl. Phys. Lett., Vol.52, p.733, 1988.
    [129] O. K. Kim, B. V. Dutt, R. J. Mccoy, and J. R. Zuber, “A low dark-current, planar InGaAs p-i-n photodiode with quaternary InGaAsP cap layer,” IEEE J. Quan. Electron.,Vol.21, p.138, 1985.
    [130] I. Kim, D. G. Chang, and P. D. Dapkus, “Growth of InGaAsP in a stagnation flow vertical reactor using TBP and TBA,” J. Crystal Growth., Vol.195, p.138, 1996.
    [131] S. R. Forrest, “Performance of InGaAsP photodiodes with dark current limited by diffusion, generation recombination, and tunneling,” IEEE J. Quan. Electron.,Vol.17, p.217, 1981.
    [132] M. B. Yi, J. Paslaski, Y. Y. Liu, T. R. Chen, and A. Yariv, “High-speed front-illuminated GaInAsP/InP pin photodiode,” IEE Electron Lett., Vol.24, p.455, 1988.

    下載圖示 校內:2005-09-24公開
    校外:2005-09-24公開
    QR CODE