簡易檢索 / 詳目顯示

研究生: 鄭展鵬
Cheng, Chan-Peng
論文名稱: 助動式輪椅之設計與開發
Design and Development of Powered-Assisted Wheelchair
指導教授: 張冠諒
Chang, Guan-Liang
蔡昆宏
Tsai, Kuen-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 概念設計專利分析助動式輪椅
外文關鍵詞: patent analysis, concept design, powered-assisted wheelchair
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據內政部統計資料顯示,我國已進入「高齡化社會」,且高齡人口已佔總人口數之9.8%。截至民國94年底我國肢體障礙人口數已達約四十萬人。輪椅的問世為這些行動不便的族群在行的方面,達到獨立自主的需求,傳統雙手驅動式輪椅已被証實須要較多耗氧量、吸呼交換率及較高的心跳率;而電動輪椅在長期使用下,將可能導致使用者心肺功能之降低。基於上述之原因,本研究將針對上肢功能尚可與上肢功能健全之兩大輪椅使用族群,進行使用者之需求探討與分析,藉由系統性之產品開發模式,開發出符合使用者需求之「助動式輪椅」。
    本研究經過需求探討、專利分析、概念設計及細部設計等設計流程後已完成「助動式輪椅」之設計與實體原型機之打樣。其主要特點為:(1)有效提升驅動效率,避免累積性傷害的發生;(2)關鍵零組件皆自行研發,能有效降低生產成本;(3)提升手動與助動模式轉換之方便性,以應付各種使用情境之需求;(4)模組化設計,具有零組件少、易拆裝與維修方便等優點。

    Since Taiwan has gone into the aged society in recent years, more medical attention on the social welfare, caring and the reconstruction of life function; they induces vigorous development in the welfare medical industry. In statistically, the aged population was 9.8% of total population. The wheelchair had provided the self-service for the walk-inconvenient groups. The traditional wheelchair is been verified that it makes user more oxygen consumption, respiratory exchange rate, and higher heart rate.
    Lectures have demonstrated that for long-term use of the powered wheelchair could lead to decrease cardio respiratory function. Therefore, the anticipated results and achievements of this study are to develop a powered-assisted wheelchair to decrease the upper extremity injuries. The major works include the service demands, patent analysis, concept design, and detail design of the powered-assisted wheelchair.
    The advantages of the original products are:
    1.To enhance driving efficiency significantly, and avoid cumulative injure.
    2.Reduce costs of the products by self-design of major components.
    3.Enhance the convenience for transforming manual to powered-assisted.
    4.Few components and system module design take easy to build and apart.

    目 錄 第一章 緒論...................................1 1.1 研究背景..................................1 1.2 研究目的..................................4 1.3 研究範圍..................................5 1.4 研究流程..................................5 第二章 文獻探討...............................7 2.1 輪椅使用族群分析..........................7 2.2 手動輪椅..................................8 2.2.1 手動輪椅之發展分析......................8 2.2.2 手動輪椅之構造、最大總尺度與分類........8 2.2.2.1 手動輪椅之構造........................8 2.2.2.2 手動輪椅之最大總尺....................12 2.2.2.3 手動輪椅之分類........................13 2.2.3 手動輪椅驅動方式與驅動效率分析..........13 2.2.4 手動輪椅驅動機構之改良分析..............14 2.2.5 手動輪椅之優、缺點整合分析..............18 2.3 電動輪椅..................................19 2.3.1 電動輪椅之發展分析......................19 2.3.2 電動輪椅之構造分析......................21 2.3.3 電動輪椅之分類..........................24 2.3.4 電動輪椅之優、缺點整合分析..............24 2.4 助動式輪椅................................26 2.4.1 助動式輪椅之發展分析....................26 2.4.2 助動式輪椅使用族群分析..................27 2.4.3 助動式輪椅之構造分析....................27 2.4.4 助動式輪椅專利分析......................29 2.5 本章總結..................................37 第三章 助動式輪椅之設計.......................38 3.1 需求探討與分析............................39 3.2 概念設計..................................40 3.3 助動式輪椅之設計..........................47 3.3.1 身體支撐系統............................47 3.3.2 上肢驅動力量感測系統....................48 3.3.3 輔助驅動系統............................52 3.3.4 控制系統................................56 第四章 助動式輪椅之製作與討論.................58 4.1 身體支撐系統製作..........................58 4.2 上肢驅動力量感測系統製作..................58 4.3 輔助驅動系統製作..........................60 4.4 控制系統製作..............................62 4.5 助動式輪椅之作動情形......................63 4.6 助動式輪椅之摺疊收納情形..................65 第五章 結論與未來研究方向.....................67 5.1 結論......................................67 5.2 未來發展方向..............................68 參考文獻.......................................70 附錄...........................................74 附錄一、馬達功率計算式.........................74 附錄二、應變軸於材料試驗系統測試之實驗數據.....75 自述...........................................76

    內政部統計處全球資訊網,http://www.moi.gov.tw/home/home.asp

    中國國家標準CNS 13575-1,輪椅-專有名詞、術語及定義,經濟部中央標準局,1995。

    中國國家標準CNS 13575-2,輪椅-專有名詞、術語及定義,經濟部中央標準局,1995。

    行政院經濟建設委員會,http://www.cepd.gov.tw/index.jsp

    林奕良,配合改良上肢運動模式之新型輪椅設計,國立中山大學機械工程研究所碩士論文,2000。

    林安祺,可變速驅動之休閒手動輪椅設計,國立中山大學機械工程研究所碩士論文,2001。

    邱貴武,可拆卸式輪椅輔助驅動機構之設計,國立中山大學機械與機電工程研究所碩士論文,2002。

    許景淵,電子差速式電動輪椅動力模組,國立台灣大學機械工程研究所碩士論文,1997。

    游許銓,電動輪椅動力驅動之解析模型,國立成功大學醫學工程研究所碩士論文,2001。

    黃銘璋,手動輪椅驅動機構的改良,中山大學機械工程研究所碩士論文,1992

    Algood SD, Cooper RA, Fitzgerald SG, Cooper R, Boninger ML. Impact of a pushrim-activated powerassisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia. Arch Phys Med Rehabil,85,1865-71, 2004

    Attali X, Pelisse F. Looking back on the evolution of electric wheelchairs. Medical Engineering & Physics, 23,735-743, 2001.

    Aylor JH. A Fault-Tolerant Optical Joystick Control Integated Circuit for A Powered Wheelchair. RESNA International ’92, 307-309, 1992.

    Barbeau H, Ladouceur M, Norman KE, Pépin A, Leroux A. Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil, 80, 225-235, 1999.

    Boer YA de, Cambach W, Veeger HEJ, Woude LHV van der. A newly designed lever mechanism. Journal of Rehabilitation Science, 5(2), 38-44, 1992.

    Brown DD, Knowlton RG, Hamill J, Schneider TL, Hetzler RK. Physiological and biomechanical differences between wheelchair-dependent and able-bodied subjects during wheelchair propulsion. Eur J Appl Physio, 60, 179-182, 1990.

    Chapman ST. Electric Machinery Fundamantals. McGraw-Hill, 1991.

    Cooper RA, Fitzgerald SG, Boninger ML, et al. Evaluation of a pushrim-activated, electric-powered wheelchair. Arch Phys Med Rehabil, 82, 702-8, 2001.

    Cooper RA, Quatrano LA, Axelson PW, Harlan W, Stineman M, Franklin B. Physical activity and health among people with disabilities. J Rehabil Res Dev, 36, 142-54, 1999.

    Davis JL, Growney ES, Johnson ME, Iuliano BA, An K. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report. J Rehabil Res Dev, 35, 61-72, 1998.

    Engel P, Henze W. Vergleichende leistungsphysiologische Beurteilung des neuentwickelten, handbetriebenen Rollstuhls GH Universitaet Kassel. In: Rollstuhlentwicklung: Deutsch-Britische Statuskolloquim. (Reha Verlag, Bonn) pp. 37-47, 1984.

    Engel P, Seeliger K. Technological and physiological characteristics of a newly developed handlever drive system. Journal of Rehabilitation Research and Development, 23(4), 37-41, 1986.

    Gellman H, Sie I, Waters RL. Late complications of the weight-bearing upper extremity in the paraplegic patient. Clin Orthop Rel Res, 233, 132-135, 1988.

    Glaser RM, Sawka MN, Laubach LL, Suryaprasad AG. Metabolic and cardiopulmonary responses to wheelchair and bicycle ergometry. J Appl Physiol, 46, 1066-70, 1979.

    Hughes CJ, Weimar WH, Sheth PN, Brubaker CE. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface. Arch Phys Med Rehabil, 73, 263-269, 1992.

    Julianna Arva, Shirley G. Fitzgerald, Rory A. Cooper, Michael L. Boninger. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair, Medical Engineering & Physics, 23, 699–705, 2001

    Kirshblum SC, O’Connor KC. Levels of spinal cord injury and predictors ofneurological recovery. Topics in Spinal Cord Medicine, 11, 1-27, 2000.

    Lakomy HA. Treadmill performance and selected physiological characteristics of wheelchair athletes. Br J Sports Med, 21, 87-133, 1987.

    Leon, J. and Lair, T. Functional status of the non-institutionalized elderly, Estimates of ADL and IADL difference DHHS publication No.90-3462, 1990.

    Masse LC, Lamontagne M, O’Riain MD. Biomechanical analysis of wheelchair propulsion for various seating positions. J Rehab R&D, 29, 12-28, 1992.

    Nichols, P. J., Norman, P. A., and Ennis, J. R. Wheelchair user's shoulder? Shoulderpain in patients with spinal cord lesions. Scandinavian Journal of Rehabilitation Medicine 11(1):29-32, 1979.

    Powell F and Inigo RM. Microprocessor Based D.C. Brushless Motor Controller for Wheelchair Propulsion. RESNA International ’92, 313-315, 1992.

    Rao SS, Bontrager EL, Gronley JK, Newsam CJ, Perry J. Three-dimensional kinematics of wheelchair propulsion. IEEE Trans Rehab Eng, 4, 152-160, 1996.

    Rodgers MM, Gayle W, Figoni SF, Kobayashi M, Lieh J, Glaser RM. Biomechanics of wheelchair propulsion during fatigue. Arch Phys Med Rehabil, 75, 85-93, 1994.

    Sanderson DJ, Sommer HJ. Kinematic features of wheelchair propulsion. J Biomech, 18, 423-429, 1985.

    Sawka MN, Glaser RM, Wilde SW, von Luhrte TC. Metabolic and circulatory responses to wheelchair and arm crank exercise. J Appl Physiol, 49, 784-8, 1980.

    Seeliger K. Lever propulsion systems. In Wheelchair Workshop Workbook: Proceedings of an international workshop, Ergonomics of manual wheelchair propulsion: state of the art. Faculty of Human Movement Sciences, Vrije Universiteit, Amsterdam, 203-209, 1991.

    Shephard RJ, Fitness in Special Populations. Champaign: BiomechanicalFactors, Wheelchair Design, and Injury Prevention 173-199, 1990.

    Sie IH, Waters RL, Adkins RH, Gellman H. Upper extremity pain in the postrehabilitation spinal cord injured patient. Arch Phys Med Rehabil, 73, 44-48, 1992.

    Veeger HEJ, Woude LHV van der, Rozendal RH. Wheelchair propulsion technique at different speeds. Scand J Rehabil Med, 21, 197-203, 1989.

    Veeger HEJ, Woude LHV van der, Rozendal RH. Load on the upper extremity in manual wheelchair propulsion. Journal of Eletromyography and Kinesiology, 1(4), 270-280, 1992.

    Veeger HEJ, Woude LH van der, Rozendal RH. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Med Sci Sports Exerc, 24, 100-7, 1992.

    Veeger HEJ, Woude LHV van der, Rozendal RH. Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer. Med Sci Sports, 23, 264-271, 1991.

    Voigt ED, Bahn D. Metabolism and pulse rate in physically handicapped when propelling a wheelchair up an incline. Scandinavian Journal of Rehabilitation Medicine, 1, 143-148, 1969.

    Woude LHV van der, Groot G de, Hollander AP, Ingen Schenau GJ van, Rozendal RH. Wheelchair ergonomics and physiological testing of prototypes. Ergonomics, 12, 1561-1573, 1986.

    Woude LHV van der, Veeger HEJ, Hendrich KM, Rozendal RH, Ingen Schenau GJ van. Manual wheelchair propulsion: effects of power output on physiology and technique. Medicine and Science in Sports and Exercise, 20, 70-78, 1988.

    下載圖示 校內:2010-08-03公開
    校外:2012-08-03公開
    QR CODE