簡易檢索 / 詳目顯示

研究生: 楊登翔
Yang, Teng-hsiang
論文名稱: 週期拉伸對造骨細胞的細胞型態的影響
Cylic stretch Effects on Cell Morphology of Osteoblast cells
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 造骨細胞機械應力細胞力學排列型態
外文關鍵詞: osteoblasts, mechanical force, cell mechanics, orientation, morphology
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨組織為提供骨骼機械性質與新陳代謝功能的礦化組織,在骨組織中含有三種細胞:造骨細胞、骨細胞與蝕骨細胞。過去有許多研究證實骨組織在受到機械刺激時,細胞會因應機械刺激而改變細胞骨架的組成調節其型態與排列方向適應刺激。
    本研究主要目的在於探討造骨細胞的型態變化與機械刺激間的關係。實驗中選用 MG-63 人的造骨細胞,培養在塗布纖維網蛋白的彈性薄膜 24 小時候,分別施加單軸向 5%,1 赫茲、0.5 赫茲、0.17 赫茲與 10%,1 赫茲、0.5 赫茲、0.17 赫茲的刺激,實驗時間為 120 分鐘,每 30分鐘觀察一次,並量化細胞的面積、長度、寬度與排列角度。
    實驗結果顯示,細胞受到刺激時,面積與寬度都會隨著實驗的進行而減少,並且其減少的速度會受到拉伸應變的影響;細胞排列也隨著實驗的進行而趨近垂直於拉伸軸向,並且拉伸應變愈大其排列角度愈大。另外對細胞施加雙軸向的拉伸,並在兩個軸向施加不同的拉伸應變刺激 30分鐘。結果顯示:細胞會垂直於應變量較大的軸向排列。

    Bone tissue is the mineralized tissue which provided multiple mechanical property and metabolic functions to the skeleton. The bone cells include osteoblasts, osteocytes and osteoclasts. When the bone is subject to the mechanical stimulation, the cell may adjust the morphology and reorient to a particular direction.
    In this study, the relationship between cyclic stretch and cell morphology was investigated. We cultured osteoblast cell, MG-63 on the isotropic silicon chamber, which pre-coated fibronectin, and applied uni-axial stretch with 10% strain ratio at 1Hz, 0.5Hz, and 0.17Hz as well as 5% at 1Hz, 0.5Hz, and 0.17Hz, for 120 min respectively. The cell morphology was recorded every 30min by a CCD camera and analyzed by image software. The cell spreading area, length, width, and alignment angle were measured and analyzed.
    The results showed that the cell spreading area and width decreased with time, and the decreased rate was influenced by strain ratio. The cell orientation was perpendicular to the stretching direction. The alignment angle between cell’s major axis and stretch axis increased with increasing strain ratio. In addition, we applied the bi-axial stretch to cell with different strain ratio in two axes for 30min. We found that cell orientation was perpendicular to the direction with maximal substrate deformation.

    中文摘要..................I Abstract.............................II 致謝...........................III 目錄..............................IV 表目錄..............................VII 圖目錄...............................VIII 第一章 緒論...............................1 1.1 骨組織...........................1 1.1.1 造骨細胞........................2 1.1.2 細胞骨架.................3 1.2 機械刺激.....................4 1.2.1 機械刺激對造骨細胞的影響............4 1.2.2 細胞型態的變化與機械拉伸的關係......9 1.3 實驗動機與目的.......11 第二章 實驗方法.............12 2.1 細胞培養.............12 2.2 實驗儀器.....13 2.2.1顯微鏡工作平台...........13 2.2.2 細胞拉伸系統.......15 2.2.3 溫度控制系統............19 2.3 影像處理與分析............21 2.4 統計分析..........23 2.5 實驗設計...............24 2.6 實驗流程........25 第三章 結果............26 3.1 細胞在週期拉伸中的型態表現............26 3.2 拉力產生機測試.................28 3.3 拉伸刺激下細胞面積的變化化.............33 3.4 細胞寬度的變化............36 3.5 細胞延伸量變化..........39 3.6 細胞排列角度.............42 3.7 雙軸不等量拉伸對細胞型態的影響.........47 第四章 討論...........49 4.1 實驗結果的討論............49 4.1.1 細胞型態的變化....................49 V 4.1.2 細胞排列的變化..............50 4.1.3 雙軸不等量拉伸的影響...........51 4.2 細胞骨架與細胞型態.........52 4.3 實驗限制因素............54 4.3.1 細胞密度的影響...........54 4.3.2 儀器限制.............54 4.3.3 影像處理造成的實驗誤差......55 第五章 結論與未來展望.........56 參考文獻..............57

    1. Ducy, P. , T. Schinke, and G. Karsenty, The osteoblast: a sophisticated fibroblast under central surveillance. Science, 2000. 289(5484): p. 1501‐4.
    2. Rubin, J., C. Rubin, and C.R. Jacobs, Molecular pathways mediating mechanical signaling in bone. Gene, 2006. 367: p. 1‐16.
    3. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol Biosci, 2004. 4(8): p. 743‐65.
    4. Wu, C.C., et al., Roles of MAP kinases in the regulation of bone matrix gene expressions in human osteoblasts by oscillatory fluid flow. J Cell Biochem, 2006. 98(3): p. 632‐41.
    5.Tang, L., Z. Lin, and Y.M. Li, Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun, 2006. 344(1): p. 122‐8.
    6. Li, J., et al., The role of extracellular matrix, integrins, and cytoskeleton in mechanotransduction of centrifugal loading. Mol Cell Biochem, 2008. 309(1‐2): p. 41‐8.
    7. Li, J., et al., Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem, 2007. 304(1‐2): p. 45‐52.
    8.Michael, K.E. and A.J. Garcia, Cell adhesion strengthening: measurement and analysis. Methods Cell Biol, 2007. 83: p. 329‐46.
    9.Jackson, W.M., et al., Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol, 2008. 295(4): p. C1007‐15.
    10. Chen, S.H., et al., Effect of low intensity ultrasounds on the growth of osteoblasts. Conf Proc IEEE Eng Med Biol Soc, 2007. 2007: p. 5834‐7.
    11. Weyts, F.A. , et al., Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int, 2003. 72(4): p. 505‐12.
    12. Nagatomi, J., et al., Frequency‐ and duration‐dependent effects of cyclic pressure on select bone cell functions. Tissue Eng, 2001. 7(6): p. 717‐28.
    13. Neidlinger‐Wilke, C., H.J. Wilke, and L. Claes, Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res, 1994. 12(1): p. 70‐8.
    14. Chaudhuri, O., S.H. Parekh, and D.A. Fletcher, Reversible stress softening of actin networks. Nature, 2007. 445(7125): p. 295‐8.
    15. Neidlinger‐Wilke, C., et al., Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res, 2001. 19(2): p. 286‐93.
    16. Yoshigi, M., et al., Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol, 2005. 171(2): p. 209‐15.
    17. Wang, J.H., et al., Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech, 2001. 34(12): p. 1563‐72.
    18. Sato, K., et al., Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells. J Biomech, 2005. 38(9): p. 1895‐901.
    19. Shikata, Y. , et al., Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site‐specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res, 2005. 304(1): p. 40‐9.
    20. Tsai , W.B. , et al., Fibronectin modulates the morphology of osteoblast‐like cells (MG‐63) on nano‐grooved substrates. J Mater Sci Mater Med, 2009.
    21. Duncan, R.L. and C.H. Turner, Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 1995. 57(5): p. 344‐58.
    22. Riveline, D., et al., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1‐dependent and ROCK‐independent mechanism. J Cell Biol, 2001. 153(6): p. 1175‐86.
    23. Civelekoglu‐Scholey, G., et al., Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress. J Theor Biol, 2005. 232(4): p. 569‐85.
    24. Walker, J.L., A.K. Fournier, and R.K. Assoian, Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion‐dependent changes in cellular tension. Cytokine Growth Factor Rev, 2005. 16(4‐5): p. 395‐405.

    下載圖示 校內:2010-08-25公開
    校外:2010-08-25公開
    QR CODE