| 研究生: |
林明宏 Lin, Ming-Hong |
|---|---|
| 論文名稱: |
資料取樣系統的致動器錯誤偵測與容錯控制:數位重新設計 Actuator Fault Detection and Fault Tolerant Control for Sampled-Data Systems: Digital Redesign Approach |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 數位重新設計 、容錯控制 、錯誤偵測 |
| 外文關鍵詞: | fault detection, fault tolerant control, digital redesign |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對具有致動器失效的某些類系統,本論文提出有效的錯誤偵測法則與容錯控制。本文涵蓋以下三個主題: 首先,針對具有致動器錯誤之非線性時變資料取樣系統,提出一種修正的卡爾曼濾波器,以有效地達到錯誤偵測。由於所提的濾波器具有高增益的特性,因此能以最佳的方式,估測大幅度變動的未知致動器衰減因子,基於此,本文中提出被動式補償致動器法則以有效地修正致動器的失效,使得受控系統在致動器失效的狀況下所設計的軌跡追蹤器,依然能有效地的追蹤原預設的軌跡,本論文利用最佳線性化技巧與數位重新設計,使得所提方法能適用到非線性時變資料取樣系統。本文第二個研究主題,則針對具有致動器失效之多個線性互聯子系統所組成的資料取樣大尺度系統,提出以參考模型為基礎之創新型分散式軌跡追蹤器,並使受控之閉迴路系統具有解耦的強健性。本文的最後一個研究主題則針對具有致動器失效之二維線性多變數隨機離散系統,提出一種改良型二維卡爾曼濾波器與一創新的二維狀態空間自調式的容錯軌跡追蹤器,達到主動式容錯控制。
This dissertation is dedicated to developing fault detection and fault tolerant control for some classes of sampled-data control systems with actuator failures via digital redesign approach. It covers three topics: First, a modified Kalman filter-based adaptive observer for the nonlinear sampled-data time-varying system with actuator failures is proposed for actuator fault detection. With the high gain property of the modified Kalman filter, it is applicable to optimally estimate a large variation of unknown decay factors of actuator failures. Based on the estimated faults, the newly proposed passive input compensation method is then able to solve actuator faults for performance recovery. In this dissertation, the optimal linearization technique is used to obtain the locally optimal linear model for a nonlinear system at each sampled state, so that the actuator fault detection and performance recovery of a nonlinear sampled-data time-varying system is accomplished. Secondly, a novel digital redesign of the analog model-reference-based decentralized adaptive tracker is proposed for the sampled-data large scale system consisting of N interconnected linear subsystems with/without actuator failures. It shows that the proposed passive fault-tolerant decentralized tracker induces a good robustness in the decoupling of the closed-loop controlled system. The decentralized adaptive controlled sampled-data system is theoretically possible to asymptotically track the desired output with a desired performance. The third topic is to propose a novel state-space self-tuning fault-tolerant control for two-dimensional multi-input multi-output linear discrete-time stochastic system with actuator failures, so that the output of the controlled system can still track the desired trajectory well.
[1] Bodson, M. and Groszkiewicz, J. E.,“Multivariable adaptive algorithms for reconfigurable flight control,” IEEE Transactions on Control System Technology, vol. 5(2), pp. 217-229, 1997.
[2] Moseler, O. and Isermann, R., “Application of model-based fault detection to a brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 47(5), pp. 1015-1020, 2000.
[3] Omerdic, E. and Roberts, G.., “Thruster fault diagnosis and accommodation for open-frame underwater vehicles,” Control Engineering Practice, vol. 12, pp. 1575-1598, 2004.
[4] Yen, G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[5] Jiang, J., Zhao Z., “Fault tolerant control system synthesis using imprecise fault identification and reconfigurable control,” in Proceedings of the 1998 IEEE ISIC/CIRNISAS Joint Conference Gaithersburg, pp. 14-17, 1998
[6] Teixeria, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear system using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 133-142, 1999.
[7] Jiang, J., “Design of reconfigurable control systems using eigenstructure assignment,” International Journal of Control, vol. 59(2), pp. 395-410, 1994.
[8] Wang, H. and Wang, Y., “Neural-network-based fault-tolerant control of unknown nonlinear systems,” IEE Proceedings Control Theory and Applications, vol. 146 (5), pp. 389-398, 1999.
[9] Zhang, X. D., Parisini, T. and Marios, M. P., “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1259-1274, 2004.
[10] Marino, R. and Tomei, P., “Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 40(7), pp. 1300-1304, 1995.
[11] Bastin, G. and Gevers, M., “Stable adaptive observers for nonlinear time varying systems,” IEEE Transactions on Automatic Control, vol. 33(7), pp. 650-658, 1988.
[12] Lders, G. and Narendra, K. S., “An adaptive observer and identifier for a linear system,” IEEE Transactions on Automatic Control, vol. 18, pp. 496-499, 1973.
[13] Caglayan, K. and Lancraft R. E., “A separated bias identification and state estimation algorithm for nonlinear systems,” Automatica, vol. 19(5), pp. 561-570, 1983.
[14] Zhang, Q., “Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems,” IEEE Transactions on Automatic Control, vol. 47, pp. 525-529, 2002.
[15] Kuo, B. C., Digital Control Systems, Rinehart and Winston, N.Y., 1980.
[16] Lewis, F. L., Applied Optimal Control Estimation: Digital Design and Implementation, Prentice-Hall, N.J., 1992.
[17] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control system to block companion forms,” IEEE Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
[18] Shieh L. S., Zhang J. L., and Sunkel J. W., “A new approach to the digital redesign of continuous-time controllers,” Control-Theory and Advanced Technology, vol. 8, pp. 37-57, 1992.
[19] Shieh, L. S., Wang, W. M., and Coleman, N. P., “Optimal digital redesign of continuous-time controllers,” Computer Mathematics and Applications, vol. 22, pp. 25-35, 1991.
[20] Rafee N., Chen T., and Malik O. P., “A technique for optimal digital redesign of analog controllers,” IEEE Transactions on Control Systems Technology, vol. 5, pp. 89-99, 1997.
[21] Chen, T. and Francis B., Optimal Sampled-Data Control Systems, Springer-Verlag, N.Y., 1995.
[22] Wu, H. S., “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20(12), pp. 2597-2608, 1989.
[23] Jamshidi, M., Large Scale System: Modeling and Control, Elserier Science Publishing, N.Y., 1983.
[24] Davison, E. J., “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, vol. 24(2), pp 325-327, 1979.
[25] Ioannou, P. A. and Sun, J., Robust Adaptive Control, Prentice Hall, N.J., 1996.
[26] Gavel, D. T. and Seljuk, D. D., “Decentralized adaptive control: structural conditions for stability,” IEEE Transactions on Automatic Control, vol. 34, pp. 413-426, 1989.
[27] Shi, L. and Singh, S. K., “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Transactions on Automatic Control, vol. 37, pp. 1106-1118, 1992.
[28] Ortega, R. and Herrera, A., “A solution to the decentralized adaptive stabilization problem,” Systems and Control Letters, vol. 20, pp. 299-306, 1993.
[29] Datta, A., “Performance improvement in decentralized adaptive control: A modified model reference scheme,” IEEE Transactions on Automatic Control, vol. 38(11), pp. 1717-1722, 1993.
[30] Chen, Y. H., Leitmann, G.., and Xiong, Z. K., “Robust control design for interconnected systems with time-varying uncertainties,” International Journal of Control, vol. 54, pp. 1119-1124, 1991.
[31] Wen, C. Y., “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” in Proceedings of the 33th IEEE Conference on Decision and Control, pp. 1187-1192, 1994.
[32] Wen, C. Y., “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Transactions on Automatic Control, vol. 38(6), pp. 1122-1126, 1995.
[33] Ikeda, K. and Shin, S., “Fault tolerant decentralized adaptive control systems using backstepping,” in Proceedings of the 34th IEEE Conference on Decision and Control, pp. 2340-2345, 1995.
[34] Pagilla, P. R., “Robust decentralized control of large-scale interconnected systems: General interconnections,” in Proceedings of American Control Conference, pp. 4527-4531, 1999.
[35] Huseyin, O., Sezer, M. E., and Siljak, D. D., “Robust decentralized control using output feedback,” IEE Proceedings, vol. 129, pp. 310-314, 1982.
[36] Datta, A. and Ioannou, P. A., “Decentralized indirect adaptive control of interconnected systems,” International Journal of Adaptive Control and Signal Processing, vol. 5, pp. 259-281, 1991.
[37] Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, Upper Saddle River, New Jersey: Prentice-Hall, 1989.
[38] Narendra, K. S. and Oleng’, N. O., “Exact output tracking in decentralized adaptive control systems,” Center for Systems Science, Yale University, New Haven, C.T., Tech. Rep. 0104, 2001.
[39] Goodwin, G. C. and Sin, K. S., Adaptive Filtering Prediction and Control, Prentice-Hall, N. J., 1984.
[40] Mirkin, B. M., “Decentralized adaptive controller with zero residual tracking errors,” in Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99), pp. 28-30, 1999.
[41] Mirkin, B. M., “Decentralized adaptive control with model coordination for large-scale time-delay systems," in Proceedings of 3rd European Control Conference, vol. 4, pp. 2946-2949, 1995.
[42] Narendra, K. S. and Oleng’, N. O., “Exact Output Tracking in Decentralized Adaptive Control Systems,” IEEE Trans on Automatic Control, vol. 47(2), pp. 390-394, 2002.
[43] Kaczorek, T., Lecture Notes in Control and Information Sciences: Two-Dimensional Linear Systems, Spring-Verlag, N.Y., 1985.
[44] Warwick, K., “Self-tuning regulators-a state-space approach,” International Journal of Control, vol. 33, pp. 839-858, 1981.
[45] Tsay, Y. T. and Shieh, L. S., “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceedings Control Theory Application, vol. 123, pp. 93-101, 1981.
[46] Shieh, L. S., Bao, Y. L., and Chang, F. R., “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceedings Control Theory Application, vol. 136, pp. 17-27, 1989.
[47] Shieh, L. S., Wang, C. T. and Tsay, Y. T., “Fast suboptimal state-space self-tuning for linear stochastic multivariable systems,” IEE Proceedings, vol. 130, pp. 143-154, 1983.
[48] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.
[49] Wellstead, P. E. and Caldas Pinto, J. R., “Self-tuning filters and predictors for two-dimensional systems 1: algorithms,” International Journal of Control, vol. 42(2), pp. 457-478, 1985.
[50] Caldas Pinto, J. R. and Wellstead, P. E. “Self-tuning filters and predictors for two-dimensional systems 2: filtering applications,” International Journal of Control, 42(2), pp. 479-496, 1985.
[51] Caldas Pinto, J. R. and Wellstead, P. E. “Self-tuning filters and predictors for two-dimensional systems 3: prediction applications,” International Journal of Control, vol. 42(2), pp. 497-515, 1985.
[52] Heath, W. P., Self-tuning Control for Two Dimensional Processes, Wiley, N.Y., 1994.
[53] Tao, G., Joshi, S. M., and Ma, X. L., ”Adaptive state feedback and tracking control of systems with actuator failures,” IEEE Transactions on Automatic Control, vol. 46(1), pp. 78-95, 2002.
[54] Tao, G., Chen, S. H., and Joshi, S. M., “An adaptive control scheme for systems with actuator failures,” Automatica, vol. 38, pp. 1027-1034, 2002.
[55] Tao, G., Chen, S. H., and Joshi, S. M., “An adaptive control scheme for systems with unknown actuator failures,” in Proceedings of the American Control Conference, pp. 1115-1120, 2002.
[56] Liu, G., “Control of robot manipulators with consideration of actuator performance degradation and failures,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2566-2571, 2001.
[57] Bao, G., Liu, G., Jiang, J., and Lam, C., “Active fault-tolerant control system design for a two-engine-bleed air system of aircraft,” 23rd Congress of the International Council of the Aeronautical Sciences, pp. 6102.1-6, 2002.
[58] Zhao, Q. and Jiang, J., “Reliable state feedback control system design against actuator failures,” Automatica, vol. 34(10), pp. 1267-1272, 1998.
[59] Zhang, Y. M. and Jiang, J., “Active fault tolerant control system against partial actuator failures,” IEE Proceedings Control Theory Application, vol. 149(1), pp. 95-104, 2002.
[60] Wu, N. E., Bang, Y. M., and Zhou, K. M., “Detection, estimation, and accommodation of loss of control effectiveness,” International Journal of Adaptive Control Signal Process, vol. 14, pp. 775-795, 2000.
[61] Noura, H., Sauter D., Hamelin, F., and Theilliol, D., “Fault-tolerant control in dynamic system: application to a winding machine,” IEEE Control Systems Magazine, vol. 20(1), pp. 33-49, 2000.
[62] Wang, D.J. and Li, Y.C., “Estimation of effectiveness factor on-line and fault tolerant control,” in Proceedings of the Second International Conference on Machine Learning and Cybernetics, pp. 765-770, 2003
[63] Kreisselmeier, G., “Adaptive observers with exponential rate of convergence,” IEEE Transactions on Automatic Control, vol. 22, pp. 2-8, 1977.
[64] Landau, D., Adaptive Control: The Model Reference Approach, Marcel Dekker, N.Y., 1979.
[65] Ioannou, P. A. and Sun, J., Robust Adaptive Control, Prentice-Hall, N.J., 1996.
[66] Anderson, B. D., Bitmead, R. R., Johnson, C. R. J., Kokotovic, P. V., Kosut, R. L., Mareels, I. M., Praly, L., and Riedle, B. D., Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press, Cambridge, 1986.
[67] , K. J. and Wittenmark, B., Computer Controlled Systems: Theory and Design, Prentice-Hall, N.J., 1997.
[68] Keller, J. K. and Darouach, M., “Optimal two-stage Kalman filter in the presence of random bias,” Automatica, vol. 33(9), pp. 1745-1748, 1997.
[69] Wu, N. E., Zhang, Y., and Zhou, K., “Detection, estimation, and accommodation of loss of control effectiveness,” International Journal of Adaptive Control and Signal Processing, vol. 14(7), pp. 775-795, 2000.
[70] Shin, J. Y., Wu, N. E., and Belcastro, C., “Adaptive linear parameter varying control synthesis for actuator failure,” Journal of Guidance, Control, and Dynamics, vol. 27, pp. 787-794, 2004.
[71] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
[72] Lewis, F.L. and Syrmos, V. L., Optimal Control, 2nd Edition, Wiley, N.Y., 1986.
[73] Dabney, J. B. and Harman, T.L., Mastering SIMULINK 2, Prentice-Hall, N.J. 1998.
[74] Kashlan, A. E. and Geneidy, M. E., “Design of decentralized control for symmeaically interconnected systems,” Automatica, vol. 32(3), pp. 475-476, 1996.
[75] Yan, X. G., Edwards, C., and Spurgeon, S. K., “Decentralised robust sliding mode control for a class of nonlinear interconnected systems by static output feedback,” Automatica, vol. 40, pp. 613-620, 2004.
[76] Chang, Y. P., Tsai, J. S. H., and Shieh, L. S., “Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints,” IEEE Transactions on Circuits and Systems, vol. 49(9), pp. 1382-1392, 2002.
[77] Tzafesta, S. G.., Multidimensional Systems: Techniques and Applications, Marcel Dekker, N.Y., 1986.
[78] Roesser, R. P., “A discrete state-space model for linear image processing,” IEEE Transactions on Automatic Control, vol. 20(1), pp. 1-10, 1975.
[79] Fornasini, E. and Marchesini, G., “State-space realization theory of two-dimensional filters,” IEEE Transactions on Automatic Control, vol. 21(4), pp. 484-491, 1976.
[80] Fornasini, E. and Marchesini, G.., “Doubly indexed dynamical systems: state space models and structural properties,” Mathematical Systems Theory, vol. 12(1), pp. 59-72, 1978.
[81] Kaczorek, T. and Swierkosz, M., “General model of n-D system with variable coefficients and its reduction to 1-D systems with variable structure,” International Journal of Control, vol. 48(2), pp. 609-623, 1988.
[82] Klamka, J., “Controllability and minimum energy control of 2-D linear systems,” in Proceeding American Control Conference, pp. 3141-3142, 1997.
[83] Kaczorek, T., “General response formula and minimum energy control for the general singular model of 2-D systems,” IEEE Transactions on Automatic Control, vol. 35(4), pp. 433-436, 1990.
[84] Li, C. and Fadali, M. S., “Optimal control of 2-D systems,” IEEE Transactions on Automatic Control, vol. 36(2), pp. 223-228, 1991
[85] Li, J. S., Tsai, J. S. H. and Shieh, L. S., “Discrete linear quadratic tracker for two-dimensional systems,” Journal of the Chinese Institute of Electrical Engineering, vol. 9(3), pp. 243-250, 2002.
[86] Jagannathan, M. and Syrmos, V. L., “A linear-quadratic optimal regulator for two-dimensional systems,” in Proceedings of the 35th IEEE Conference on Decision and Control, pp. 4172-4177, 1996.
[87] Rostan, M. and Lee, E. B., “Optimal control (quadratic performance) for linear two-dimensional systems,” in Proceedings of the 28th IEEE Conference on Decision and Control, pp. 307-309, 1989.
[88] Li, J. S., Tsai, J. S. H., and Shieh, L. S., “Optimal control for two-dimensional linear systems with variable coefficients,” Asian Journal of Control, vol. 1(4), pp. 245-257, 1999.
[89] Du, C. L. and Xie, L. H., H_infinity Control and Filtering of Two-Dimensional Systems, Springer, N.Y., 2002.
[90] Dudgeon, D. E. and Mersereau, R. M., Multidimensional Digital Signal Processing, Prentice-Hall, N.J., 1984.
[91] Parker, S. R. and Kayran, A. H., “Lattice parameter autoregressive modeling of two-dimensional fields-Part I: The quarter-plane case,” IEEE Transactions on Acoustic, Speech, Signal Processing, vol. 32, pp. 872-885, 1984.
[92] Kashyap, R. L., Chellappa, R., and Khotanzad, A., “Texture classification using features derived from random field models,” Pattern Recognition Letters, vol. 1(1), pp. 43-50, 1982.
[93] Ljung, L., System Identification Theory for the User, Prentice-Hall, N.J., 1987.
[94] Lewis, F. L., “A review of 2-D implicit systems,” Automatica, vol. 28, pp. 345- 354, 1992.
[95] Paraskevopoulos, P. N. and Antoniou, G. E., “Minimal realization of two-dimensional systems via a state space cyclic model,” International Journal of Electronics, vol. 74(4), pp. 491-511, 1993.
[96] Kung, S. Y., Levy, B. C., Morf, M., and Kailath, T., “New results in 2-D systems theory, part II: 2-D state-space models-realization and notations of controllability, observability and minimality,” Proceedings of IEEE, vol. 65, pp. 945-961, 1977.
[97] Ogata, K., Discrete-time control systems, Prentice-Hall, N.J., 1987.
[98] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.