| 研究生: |
黃富鴻 Huang, Fu-Hong |
|---|---|
| 論文名稱: |
鎂摻雜鈦酸鋇介電材料系統 [Bam(Ti1-xMgx)O3 m=0.997-1.003, x=0.02] 之製備、分析、與電性 Preparation, Characterization, and Electrical Properties of Dielectric Material System of Magnesium-Doped Barium Titanate Ceramics.[(Bam(Ti1-xMgx)O3), m=0.997-1.003, x=0.02} |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 鈦酸鋇 、鎂摻雜 、晶體結構 、介電性質 、粉末混合 、核殼結構 |
| 外文關鍵詞: | barium titanate, magnesium doping, crystal structure, dielectric properties, powder mixing, core shell structure |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鋇材料因具備良好的介電性質,多作為積層陶瓷電容 (Multi-Layer Ceramic Capacitor, MLCC) 兩電極層間之介電材料,並且此材料避免與卑金屬電極共燒時會有半導化現象產生,必須在還原氣氛爐中燒結,另外為了改善半導化現象,亦會透過添加受體離子進入鈦酸鋇中使其形成受體離子補償,以鎂離子進入鈦酸鋇中鈦離子位置並產生氧空缺以作為達電中性平衡之補償,並且捕捉和限制自由電子的移動。故本研究選擇摻雜鎂離子 (Mg2+) 進入鈦酸鋇當中,因鎂離子為低價受體離子,可以對鈦離子進行置換取代,以及後續燒結成陶瓷體後,內部晶粒形成核-殼結構之必要元素。因此本研究區分為兩階段,第一階段使用固態反應法合成出在 Ba/Ti >1 富鋇情況下固定鎂摻雜量之鎂摻雜鈦酸鋇 Bam(Ti1-xMgx)O3-x (m=1.003, 1.005;x=0.02) 介電材料。富鋇條件之設計結合摻雜適當摻雜之鎂離子,能有效抑制晶粒成長使陶瓷體緻密度和內部晶粒之晶界分率皆有效提升。實驗設計方面,透過Ba-excess的設計了解鎂離子取代鈦位置後對晶體結構、晶格常數、拉曼光譜、顯微結構、比表面積及介電性質之影響,並且探討相同組成下利用不同煅燒溫度之測試對粉末規格之影響,後續再透過氣氛燒結探討此材料之各項性質在MLCC 應用之可行性。在陶瓷體介電性質方面,三個成分點Bam(Ti1-xMgx)O3-x (m=1.003, 1.005;x=0.02)當中,Ba1.003(Ti2.98Mg0.02)O2.98 具有較佳之表現,其室溫下之介電常數和電阻率分別可達約 1800 及 3.9 GΩ·m,但由於其溫度-電容曲線 (TCC) 會在氣氛燒結下因核-殼比例改變,造成低溫區間具有多個相轉換溫度,使其隨電容表現溫度上升而急遽下降,因此欲利用第二階段複合材料粉末混合的方式,探討混合兩種粉末能否對後續性質有所改善以及介電性質變化之趨勢。第二階段之實驗設計為混合鋇鈦比0.997之純鈦酸鋇和 Ba1.003(Ti2.98Mg0.02)O2.98 (BTM) 兩種粉末,並改變 BTM 混合添加比例 (0, 1, 5, 10, 15, 25, 50, 75wt%) 觀察其是否能改善其 TCC 曲線和研究介電性質是否能隨混合量增加而有所趨勢。實驗結果顯示,與純鈦酸鋇相比,在混合添加 75wt% 之 BTM 時可有效提升其介電常數和電阻率值,分別提升至 1750 和 3.9 GΩ·m,並搭配穿透式電子顯微鏡 (TEM) 和能量散佈儀 (EDS) 觀察在純鈦酸鋇混合25wt% 及75wt% BTM 之陶瓷體內部晶粒,其個別核-殼結構的厚度和鎂離子、摻雜劑當中的元素濃度擴散深度對介電性質之影響。在溫度-電容曲線 (TCC) 方面,純鈦酸鋇在混合 25wt% BTM 以內時可使其 TCC 曲線落在工業規格 X7R (±15%) 當中,而混合至75wt% BTM 以內時會座落在X7T (+22%, -33%) 的工業規格當中,故能有效透過粉末混合的方式改善其電容變化程度對廣泛溫度區間之穩定性。
In this study, take part into two research stages. First stage, utilize solid state reaction and two-stage calcination to synthesize magnesium-doped barium titanate Bam(Ti1-xMgx)O3-x, m=1.003, 1.005;x=0.02 dielectrics, so as to find out the proper composition under 2 mol% Mg2+ doped Ba-rich barium titanate. Second stage, utilize ball-milling method to mix two kinds of barium titanate matrix powder for the purpose of forming composites of BT+ y wt% Ba1.003(Ti0.98Mg0.02)O2.98 (y=0-75 wt%). Recognize the influence of Mg2+ replace Ti-site of barium titanate and lattice parameters changes, Raman spectrum, specific surface area, microstructures, and dielectric properties changes. The results in first stage show that under two calcination conditions 800°C/2h-1200°C/2h and 800°C/2h-1250°C/2h, higher calcined temperature is required when Ba/Ti ratio raises. For microstructures, the effects of Mg2+doped Ba-rich barium titanate cause grain growth inhibited, grain boundaries fractions increased under densification. For dielectric properties, the resistivity of densified Ba1.003(Ti0.98Mg0.02)O2.98 (BTM) reach target value 39 GΩ•m, but its capacitance changes dramatically drops during raising temperature. For second stage, the results show that sintered disk get dielectric constant K=1300-1800 and resistivity between 21-39 GΩ•m, also take TEM/EDS to observe that thicker shell thickness were formed by the diffusion of dopants. For disk TCC, while adding mixing 25 wt% BTM can meet X7R, adding mixing 75 wt% BTM meets X7T specification, this research successfully improved the instability of capacitance changes.
1. 邱羽澤,鎂摻雜之鈦酸鋇陶瓷的製備、分析、與電性,資源工程學系碩博士班,國立成功大學,台南市,2022。
2. A. Karvounis, F. Timpu, V. Vogler-Neuling, R. Savo and R. Grange, Barium Titanate Nanostructures and Thin Films for Photonics. Advanced Optical Materials, 2020. 8(24): p. 23.
3. L.C. Dufour and C. Monty, “Surface and Interface of Ceramic Materials,’ pringer Science and Business Media, 2012.
4. M.E. Villafuerte-Castrejon, E. Morán, A. Reyes Montero and R. Vivar, Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge. Materials, 2016. 9(1): p. 27.
5. S. Lee, C.A. Randall, and Z.K. Liu, Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate. Journal of the American Ceramic Society, 2007. 90(8): pp. 2589-2594.
6. S. Lee, Liu, Z.K. Liu, M.H. Kim, and C.A. Randall, Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3. Journal of Applied Physics, 2007.101(5): p. 8.
7. S. Lee, C.A. Randall, and Z.K. Liu, Comprehensive Linkage of Defect and Phase Equilibria Through Ferroelectric Transition Behavior in BaTiO3-Based Dielectrics: Part 2. Defect Modeling Under Low Oxygen Partial Pressure Conditions. Journal of the American Ceramic Society, 2008. 91(6): pp. 1753-1761.
8. S.H. Yoon, J.H. Lee, D.Y. Kim and N. Hwang, Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor-(Niobium) and Acceptor-(Magnesium) Doped Barium Titanate. Journal of the American Ceramic Society, 2003. 86(1): pp. 88-92.
9. J.K. Lee, K.S. Hong, and J.W. Jang, Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics. Journal of the American Ceramic Society, 2001. 84(9): pp. 2001-2006.
10. J.N. Lin, and T.B. Wu, Effects of Isovalent Substitutions on Lattice Softening and Transition Character of BaTiO3 Solid-Solutions. Journal of Applied Physics, 1990. 68(3): pp. 985-993.
11. D. Hennings, A. Schnell, and G. Simon, Diffuse Ferroelectric Phase-Transitions in Ba(Ti1-YZry)O3 Ceramics. Journal of the American Ceramic Society, 1982. 65(11): pp. 539-544.
12. D. Makovec, Z. Samardžija, U. Delalut and D. Kolar, Defect Structure and Phase-Relations of Highly Lanthanum-Doped Barium-Titanate. Journal of the American Ceramic Society, 1995. 78(8): pp. 2193-2197.
13. L.A. Xue, Y. Chen, and R.J. Brook, the Influence of Ionic-Radii on the Incorporation of Trivalent Dopants into BaTiO3. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1988. 1(2): pp. 193-201.
14. J. Jeong, and Y.H. Han, Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2004. 43(8A): pp. 5373-5377.
15. X. Lai, H. Hao, Z. Liu, S. Li, Y. Liu, M. Emmanuel, Z. Yao, M. Cao, D. Wang and H. Liu, Structure and Dielectric Properties of MgO-Coated BaTiO3 Ceramics. Journal of Materials Science-Materials in Electronics, 2020. 31(11): pp. 8963-8970.
16. H.L. Gong, H. Gong, X.Wang, Q.Zhao and L. Li, Effect of Mg on the Dielectric and Electrical Properties of BaTiO3-Based Ceramics. Journal of Materials Science, 2015. 50(21): pp. 6898-6906.
17. S.T. Bae, D.K. Yim, K.S. Hong, J.S. Park and H. Shin, Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO-Doped BaTiO3. International Journal of Applied Ceramic Technology, 2009. 6(6): pp. 679-686.
18. T. Nagai, T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino and K. Niihara, Effect of MgO Doping on the Phase Transformations of BaTiO3. Journal of the American Ceramic Society, 2000. 83(1): pp. 107-112.
19. R.Z. Liu, Z. Chen, Z. Lu and X. Wang, Effects of Sintering Temperature and Bi2O3, Y2O3 and MgO Co-Doping on the Dielectric Properties of X8R BaTiO3-Based Ceramics. Ceramics International, 2022. 48(2): pp. 2377-2384.
20. C.S. Chen, C.C. Chou, and I.N. Lin, Microstructure of X7R Type Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives. Journal of Electroceramics, 2004. 13(1-3): pp. 567-571.
21. 楊育瑄,不同起始原料、A/B比和煆燒處理對卑金屬電極積層陶瓷電容器用介電材料介電性質之影響,資源工程學系碩士班,國立成功大學,台南市,2022。
22. 陳柏縉,煆燒對X5R及X6S規格之積層陶瓷電容電性以及微結構影響,資源工程學系碩士班,國立成功大學,台南市,2022。
23. O. Saburi, Properties of Semiconductive Barium Titanates. Journal of the Physical Society of Japan, 1959. 14(9): pp. 1159-1174.
24. G.H. Jonker, Some Aspects of Semiconducting Barium Titanate. Solid-State Electronics, 1964. 7(12): pp. 895-903.
25. S. Yasmin, S. Choudhary, M. Hakim and M.A. Hashan Bhuiyan, Structural and Dielectric Properties of Pure and Cerium Doped Barium Titanate. Journal ofCeramic Processing Research, 2011. 12(4): pp. 387-391.
26. G. Burns, and B.A. Scott, Lattice Modes in Ferroelectric Perovskites-BaTiO3. Physical Review B, 1973. 7(7): pp. 3088-3101.
27. J.D. Freire, and R.S. Katiyar, Lattice-Dynamics of Crystals with Tetragonal BaTiO3 Structure. Physical Review B, 1988. 37(4): pp. 2074-2085.
28. T. Noma, S. Wada, M. Yano and T. Suzuki, Analysis of Lattice Vibration in Fine Particles of Barium Titanate Single Crystal Including the Lattice Hydroxyl Group. Journal of Applied Physics, 1996. 80(9): pp. 5223-5233.
29. S. Wada, M. Yano, T. Suzuki and T. Noma, Crystal Structure of Barium Titanate Fine Particles Including Mg and Analysis of their Lattice Vibration. Journal of Materials Science, 2000. 35(15): pp. 3889-3902.
30. 張哲源,鈦酸鋇介電陶瓷之成分調整與結構及電容率平坦化的關聯,資源工程學系博士班,國立成功大學,台南市,2013。
31. T. Hiramatsu, T. Tamura, N. Wada, H. Tamura and Y. Sakabe, Effects of Grain Boundary on Dielectric Properties in Fine-Grained BaTiO3 Ceramics. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2005. 120: pp. 55-58.
32. M.H. Frey and D.A. Payne, Grain-Size Effect on Structure and Phase Transformations for Barium Titanate. Physical Review B, 1996. 54(5): pp. 3158-3168.
33. S.C. Jeon, B.K. Yoon, K.H. Kim and S.J. Kang, Effects of Core/Shell Volumetric Ratio on the Dielectric-Temperature Behavior of BaTiO3. Journal of Advanced Ceramics, 2014. 3(1): pp. 76-82.
34. D.E. Mccauley, M.S.H. Chu, and M.H. Megherhi, PO2 Dependence of the Diffuse-Phase Transition in Base Metal Capacitor Dielectrics. Journal of the American Ceramic Society, 2006. 89(1): pp. 193-201.
35. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS).
36. H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement. Acta Crystallographica, 1967. 22: p. 151.
37. D.P. Dutta, M. Roy and N. Maitib, Phase Evolution in Sonochemically Synthesized Fe3+ Doped BaTiO3 Nanocrystallites: Structural, Magnetic and Ferroelectric Characterisation. Physical Chemistry Chemical Physics, 2016. 18(14): pp. 9758-9769.
38. B. Poojitha, B. Poojitha, A. Kumar, A. Rathore and S. Saha, Correlations between the Structural, Magnetic, and Ferroelectric Properties of BaMO3: M = Ti1-X(Mn/Fe)(X) Compounds: A Raman Study. Journal of Alloys and Compounds, 2020. 846: p. 11.
校內:2028-08-14公開