簡易檢索 / 詳目顯示

研究生: 張簡新揚
Chang-Chien, Hsin-Yang
論文名稱: 相異雙機系統之次同步共振現象改善研究
A Study on Suppression of Subsynchronous Resonance of a Nonidentical Two-Machine System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 138
中文關鍵詞: 靜態同步串聯補償器串聯向量補償器次同步扭轉振盪
外文關鍵詞: Static synchronous series compensator, series vectorial compensator, subsynchronous resonance
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用靜態同步串聯補償器以及串聯向量補償器來抑制含有串聯電容補償電力系統之次同步扭轉振盪。本文利用國際電機電子工程師學會次同步共振工作小組提出之第二標準模型第二系統做為研究的系統,其中包含了兩組不同的蒸汽渦輪發電機組,經由共同匯流排與串聯補償電容器連接至無限匯流排。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立蒸汽渦輪機、同步發電機、串聯電容補償電力系統、靜態同步串聯補償器及串聯向量補償器等模型,並利用極點安置法設計靜態同步串聯補償器及串聯向量補償器之比例-積分-微分阻尼控制器。在穩態特性方面,針對線路串聯補償比、同步發電機之端電壓、輸出功率做頻域之特徵值分析。在暫態及動態模擬方面,完成轉矩干擾以及三相短路故障等模擬結果。由穩態、動態及暫態模擬結果得知,當加入靜態同步串聯補償器及串聯向量補償器結合比例-積分-微分阻尼控制器後,能有效抑制蒸汽渦輪機發電系統的次同步扭轉振盪。

    This thesis presents the suppression of subsynchronous resonance (SSR) in a steam-turbine power generation system using a static synchronous series compensator (SSSC) and a series vectorial compensator (SVeC). This research is based on the IEEE Second Benchmark Model, system-2. The q-d axis equivalent-circuit model of the steam turbine, synchronous generator, series-compensated network, SSSC and SVeC under three-phase balanced loading conditions is used to establish the complete studied system. A proportional-integral-derivative (PID) damping controller of the proposed SSSC and SVeC is designed by using pole-assignment approach based on modal control theory. Steady-state characteristics of the studied system under different series-compensation ratios, terminal voltage, and output active power of the synchronous generators are performed. Time-domain dynamic simulations under various disturbance conditions are also carried out. The results show that the proposed SSSC and SVeC joined with the designed PID damping controller are effective to suppress the SSR of the studied power systems.

    目錄 頁次 中文摘要 I Extended Abstract II 致謝 IX 目錄 III 表目錄 XIII 圖目錄 XVI 符號說明 XX 第一章 緒論 1 1-1 研究動機 1 1-2 串聯電容補償簡介 3 1-3 相關文獻回顧 6 1-4 本論文之貢獻 9 1-5 研究內容概述 10 第二章 系統與數學模型 12 2-1 前言 12 2-2 質量-彈簧-阻尼器系統之數學模型 16 2-3 調速機之數學模型 18 2-4 蒸汽渦輪機轉矩之數學模型 18 2-5 同步發電機之數學模型 19 2-6 激磁機之數學模型 23 2-7 靜態同步串聯補償器之數學模型 24 2-8串聯向量補償器之數學模型 27 第三章 利用極點安置法設計阻尼控制器 31 3-1 前言 31 3-2 串聯補償器之控制系統模型 31 3-2-1 靜態同步串聯補償器之控制系統模型 32 3-2-2 串聯向量補償器之控制系統模型 33 3-3 串聯補償器之控制器 35 3-3-1 靜態同步串聯補償器加入比例-積分-微分阻尼控制器 35 3-3-2 串聯向量補償器加入比例-積分-微分 阻尼控制器 40 3-4 控制器參數之靈敏度分析 45 第四章 系統之穩態分析 52 4-1 前言 52 4-2 系統之穩態分析 56 4-2-1 輸電線路串聯補償比變化時,系統SSR模態特徵值之分析 56 4-2-2 同步發電機輸出實功率變化時,系統SSR模態特徵值之析 67 4-2-3 同步發電機輸出端電壓變化時,系統SSR模態特徵值之析 76 第五章 動態與暫態響應分析 85 5-1 前言 85 5-2 發電機發生轉矩干擾時之動態分析 85 5-3 無限匯流排發生三相短路故障時之暫態分析 105 第六章 結論與未來研究方向 124 6-1 結論 124 6-2 未來研究方向 125 參考文獻 127 附錄 134 作者簡介 137

    參考文獻

    [1] Y. N. Yu, Electric Power System Dynamics, New York: Academic Press, 1983.
    [2] P. M. Anderson, B. L. Agrawal, and J. E. Van Ness, Subsynchronous Resonance in Power Systems, New York: IEEE Press, 1990.
    [3] M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York: IEEE Press, 1976.
    [4] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance tests at Mohave,” IEEE Trans. Power Apparatus and Systems, vol. 94, no. 5, pp. 1878-1885, Sep./Oct. 1975.
    [5] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. 96, no. 5, pp. 1565-1572, Sep./Oct. 1977.
    [6] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. 140, no. 5, pp. 1057-1066, May 1985.
    [7] IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. 98, no. 6, pp. 1872-1875, Nov. 1979.
    [8] IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. 104, no. 2, pp. 321-327, Feb. 1985.
    [9] IEEE Committee Report, “Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Systems, vol. 6, no. 2, pp. 830-834, May 1991.
    [10] L. Wang and Y.-Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static Var compensations: A comparative study,” IEEE Trans. Energy Conversion, vol. 3, no. 1, pp. 22-29, Mar. 1988.
    [11] Y.-Y. Hsu and L. Wang, “Modal control of an HVDC system for the damping of subsynchronous oscillations,” IEE Proc. Generation, Transmission and Distribution, vol. 136, Part C, no. 2, pp. 78-86, Mar. 1989.
    [12] Series Compensation Boosting transmission capacity, http://www05.abb.com/global/scot/scot221, retrieved date: Jun. 13, 2015.
    [13] S. Purushothaman and F. de León, “Eliminating subsynchronous oscillations with an induction machine damping unit (IMDU),” IEEE Trans. Power Systems, vol. 26, no. 1, pp. 225-232, Nov. 2011.
    [14] R. P. Carpanen and B. S. Rigby, “A FACTS-based power flow model for the IEEE SSR first benchmark model,” in Proc. IEEE Power Engineering Society Conference and Exposition in Africa, Johannesburg, South Africa, Jul. 16-20, 2007, pp. 1-8.
    [15] S. R. Joshi, E. P. Cheriyan, and A. M. Kulkarni, “Output feedback SSR damping controller design based on modular discrete-time dynamic model of TCSC,” IET Generation, Transmission, and Distribution, vol. 3, no. 6, pp. 561-573, Jul. 2009.
    [16] R. Thirumalaivasan, M. Janaki, and N. Prabhu, “Damping of SSR using subsynchronous current suppressor with SSSC,” IEEE Trans. Power Systems, vol. 28, no. 1, pp. 64-74, Feb. 2013.
    [17] S. Golshannavaz, F. Aminifar, and D. Nazarpour, “Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1961-1968, Jul. 2014.
    [18] M. Farahani, “Damping of subsynchronous oscillations in power system using static synchronous series compensator,” IET Generation, Transmission, and Distribution, vol. 6, no. 6, pp. 539-544, Jun. 2012.
    [19] J. M. González, C. A. Cañizares, and J. M. Ramírez, “Stability modeling and comparative study of series vectorial compensators,” IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 1093-1102, Apr. 2010.
    [20] L. Wang and D.-N. Truong, “Comparative stability enhancement of PMSG-based offshore wind farm fed to an SG-based power system using an SSSC and an SVeC,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1336-1344, May 2013.
    [21] F. A. R. A. Jowder and B. T. Ooi, “Series compensation of radial power system by a combination of SSSC and dielectric capacitors,” IEEE Trans. Power Delivery, vol. 20, no. 1, pp. 458-465, Jan. 2005.
    [22] A. Jain, K. Joshi, A. Behal, and N. Mohan, “Voltage regulation with STATCOMs Modeling, control and results,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 726-735, Apr. 2006.
    [23] X. Zheng, Z. Xu, and J. Zhang, “A supplementary damping controller of TCSC for mitigating SSR,” in Proc. IEEE Power & Energy Society General Meeting, Hangzhou, China, Jul. 26-30, 2009, pp. 1-5.
    [24] Y. Tang and R. Q. Yu, “Mechanism analysis of using thyristor controlled series compensation to mitigate subsynchronous resonance,” in Proc. IPEC Conference Proceedings, Nanjing, China, Oct. 27-29, 2010, pp. 1094-1099.
    [25] H. Ghahramani, A. Lak, M. Farsadi, and H. Hosseini, “Mitigation of SSR and LFO with TCSC based conventional damping controller optimized by PSO algorithm and fuzzy logic controller,” Turkish Journal of Electrical Engineering and Computer Sciences, pp. 1-29, Jan. 2012.
    [26] Y. He, P. Sicard, J. Xu, Z. Yao, and V. Rajagopalan, “A unified optimal controller design of TCSC to improve the power system dynamic stability,” in Proc. IEEE Power Engineering Society 1999 Winter Meeting, New York, N.Y., U.S.A., Jan. 31-Feb. 4, 1999, pp. 743-748.
    [27] L. A. S. Pilotto, A. Bianco, Willis F. Long, and A. A. Edris, “Impact of TCSC control methodologies on subsynchronous oscillations,” IEEE Trans. Power Delivery, vol. 18, no. 1, pp. 243-252, Jan. 2003.
    [28] P. Chittora and N. Kumar, “An induction machine damping unit for damping SSR in a series compensated power system,” in Proc. IEEE 5th India International Conference on Power Electronics (IIICPE), New Delhi, India, Dec. 6-8, 2012, pp. 1-6.
    [29] Q. Liu, C. Zhou, L. Angquist, and Christian, “A novel active damping control of TCSC for SSR suppression in a radial corridor,” in Proc. 2008 Third International Conference on Electric Utility Deregulation and Restructuring and power Technologies, Nanjing, China, Apr. 6-9, 2008, pp. 136-142.
    [30] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [31] D. Rai, S. O. Faried, G. Ramakrishna, and A. Edris, “Hybrid series compensation scheme capable of damping subsynchronous resonance,” IET Generation, Transmission, and Distribution, vol. 4, no. 3, pp. 456-466, Nov. 2009.
    [32] G. Gross and M. C. Hall, “Synchronous machine and torsional dynamic simulation in the computation of electromagnetic transients,” IEEE Trans. Power Apparatus and Systems, vol. 97, no. 3, pp. 1074-1086, Mar. 1978.
    [33] X. Xiao, B. Gao, and C. Zhao, “A novel SSR-damping scheme based on a single-phase SSSC,” in Proc. Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES) & Power India, Beijing, China, Dec. 20-23, 2010, pp. 1-5.
    [34] J. C. See, S. I. Moon, J. K. Park, and J. W. Choe, “Design of a robust SSSC supplementary controller to suppress the SSR in the series-compensated system,” in Proc. IEEE Power Engineering Society Winter Meeting, Cheongju, South Korea, Oct. 25-28, 2001, pp. 1283-1288.
    [35] M. Farahani, “Damping of subsynchronous oscillations in power system using static synchronous series compensator,” IET Generation, Transmission & Distribution, vol. 6, no. 6, pp. 539-544, Jun. 2012.
    [36] M. Bongiorno, L. Ängquist, and J. Svensson, “A novel control strategy for subsynchronous resonance mitigation using SSSC,” IEEE Trans. Power Delivery, vol. 23, no. 2, pp. 1033-1041, Apr. 2008.
    [37] L. Wang, “Damping of torsional oscillations using excitation control of synchronous generator: The IEEE second benchmark model investigation,” IEEE Trans. Energy Conversion, vol. 6, no. 1, pp. 47-54, Mar. 1991.
    [38] L. Wang and C.-H. Lee, “Stabilizing torsional oscillations using a shunt reactor controller,” IEEE Trans. Energy Conversion, vol. 6, no. 3, pp. 373-380, Sep. 1991.
    [39] L. Wang, S.-M. Lee, and C.-L. Huang, “Damping subsynchronous resonance using superconducting magnetic energy storage unit,” IEEE Trans. Energy Conversion, vol. 9, no. 4, pp. 770-777, Dec. 1994.
    [40] L. Wang, “Comparative studies of prefiring NGH scheme and phase imbalance scheme on stabilizing torsional oscillations,” IEEE Trans. Power Systems, vol. 15, no. 1, pp. 307-312, Feb. 2000.
    [41] L. Wang, S.-J. Mau, and C.-C. Chuko, “Suppression of common torsional mode interactions using shunt reactor controllers,” IEEE Trans. Energy Conversion, vol. 8, no. 3, pp. 539-545, Sep. 1993.
    [42] S.-Y. Lu, “Hevajra teaches essentials of secret practice and exploitation of energy from earth, water, fire, and wind,” Living Buddha Lian-sheng Sheng-yen Lu Dharma Talk on September 7th, 2008 at True Buddha Rainbow Temple, WA, USA. (http://tbsn.org/chinese3/news.php?cid=29&csid=42&id=1129, retrieved date: May 7, 2015).
    [43] 毛聖鑑,並聯電抗器在抑制相異雙機系統轉軸扭轉振盪上之研究,國立成功大學電機工程研究所碩士論文,民國80年六月。
    [44] 黃其文,利用閘流體控制串聯電容器之H∞控制器以抑制次同步共振,國立成功大學電機工程研究所碩士論文,民國86年六月。
    [45] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程研究所碩士論文,民國100年六月。
    [46] 張庭仁,應用彈性交流輸電系統於增強離岸式風場連接至電力系統之穩定度,國立成功大學電機工程研究所博士論文,民國102年六月。

    無法下載圖示 校內:2020-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE