簡易檢索 / 詳目顯示

研究生: 林育蓉
Lin, Yu-Jung
論文名稱: 低電壓應用之電壓控制式昇壓穩壓器
A Boost Regulator with Voltage-Mode Control for Low Voltage Applications
指導教授: 劉濱達
Liu, Bin-Da
梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 69
中文關鍵詞: 同步整流昇壓轉換器
外文關鍵詞: efficiency, compensation, voltage-mode, boost converter
相關次數: 點閱:115下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個應用在低電壓的電壓模式控制的昇壓轉換器電路,主要是針對單顆鋰電池(2.7 V ~ 4.2 V)的電壓來昇壓至5 V。為了獲得較佳的效率,我們採用了同步整流的架構來減少導通的損失。另外電路啟動時會有過大的電流產生,而柔性啟動裝置可用來防止電路中的元件因此而損壞。當電路操作在不連續導通模式下時,由於同步整流架構中的電晶體屬於雙向導通的元件,逆電流的情形將會產生而造成能量的損耗,本文以零電流偵測裝置來改善這個情形。
    本電路是以TSMC所提供的0.35μm 3.3/5 V 製造參數來設計。當模擬輸入電壓為3.6 V及輸出電流為250 mA時,整個電路的操作效率最高可到達94 %,所以適用在可攜帶電子產品的應用。

    A dc-dc voltage-mode boost converter operated in low voltage applications is introduced in this thesis. The boost converter is used to convert Li-ion battery voltage (2.7 V ~ 4.2 V) to 5 V. The synchronous rectification architecture is used to reduce conduction loss and the high efficiency is obtained. At initial operation of the system, sudden current may be generated and soft start circuit is used to avoid this situation and to protect the converter system. When the converter system is operated in discontinuous conduction mode (DCM), higher reversed current will be occurred because of the bi-directional switching of the synchronous rectifier. In order to solve this problem, a zero current detector circuit is designed and power consumption is reduced. Finally, the feedback model is presented and simulated to select suitable compensation networks.
    Simulation results show that the efficiency of the boost converter is 94 % with 3.6 V input voltage and 5 V / 250 mA conduction. This circuit is implemented with TSMC 0.35μm 3.3/5 V CMOS technology.

    1. Introduction 1 1.1 Motivation 1 1.2 Organization 2 2. Fundamentals of Switching Regulators 4 2.1 Basic Switching DC-DC Regulators in steady-state 4 2.1.1 Buck(Step-down) Regulator 4 2.1.2 Boost(Step-up) Regulator 5 2.1.3 Buck-Boost(Step-up or Step-down) Regulator 6 2.2 Operational Principles of Boost Converter 7 2.2.1 Output Ripple 8 2.2.2 The Discontinuous Conduction Mode (DCM) 11 2.3 Control of Switched Power Supplies: Voltage Mode vs. Current Mode 14 2.3.1 Voltage Mode Control 15 2.3.2 Current Mode Control 16 2.3.3 Advantages and Disadvantages of voltage-mode vs. current-mode control 17 2.4 Specification of Switching Regulator 20 2.4.1 Line Regulation 20 2.4.2 Load Regulation 20 2.4.3 Transient Response 21 2.4.4 Efficiency 23 3. System Stability Analysis and Feedback Functions 24 3.1 Principle of feedback functions 24 3.2 Small-Signal Model of Boost Converter 26 3.3 Compensation of the Whole System 30 4. Circuit Design and Simulations 34 4.1 Power Transistors of the Boost Converter 35 4.2 Operational Amplifier Circuit for Error Amplifier 36 4.3 Bandgap Voltage Reference 41 4.4 PWM Control Circuit 45 4.4.1 Comparator circuit 45 4.4.2 Sawtooth wave generator 47 4.4.3 Level shift circuit 51 4.5 Soft-Start Circuit 51 4.6 Zero Current Detector Circuit 54 4.7 Simulation Results 59 5. Conclusions and Future Work 66 5.1 Conclusions 66 5.2 Future Work 67 References 68

    [1] http://www.waynezhang.com/2006/04/10.
    [2] A. Stratakos, C. Sullivan, S. Sanders, and R. Brodersen, “DC power supply design in portable systems,” Univ. of California, Berkeley, CA, Technical Report ERL Memo. No. M95/4, 1995.
    [3] M. Brown, Power Supply Cookbook, 2nd ed. London, UK: Newnes-Butterworths, 2001.
    [4] “Linear & switching voltage regulator handbook,” ON Semiconductor Inc., Colorado, USA, HB206/D, Rev. 4, Feb. 2002.
    [5] A. I. Pressman, Switching Power Supply Design. New York: McGraw-Hill, 1991.
    [6] D. Wang, “The trends for using PWM controllers and its impact in high performance switching mode power supply designs,” in Instrumentation, Systems, and Automation Society EXPO 2003 Proceedings, Oct. 2003.
    [7] http://semiconductors.globalspec.com/LearnMore/Semiconductors /Power_ Managem ent_Chips/DC_DC_Converter_Chips.
    [8] H. W. Whittington, B. W. Flynn, D. E. Macpherson, Switched Mode Power Supplies: Design and Construction, 2nded. New York: Wiley, 1997.
    [9] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer Academic, 2001.
    [10] R. Ridley “Current mode or voltage mode?” Switching Power Magazine, pp. 4-5 Oct. 2000.
    [11] R. Mammano, “Switching power supply technology: Voltage mode vs. current mode,” Texas Instruments Inc., Dallas, TX, Unitrode Design Note DN-62, 1994.
    [12] http://schmidt-walter.fbe.fh-darmstadt.de/snt/snt_eng/snteng6.pdf.
    [13] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technologies,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [14] 梁適安, 交換式電源供應器之理論與實務設計, 第七版. 全華科技圖書, 2004.
    [15] http://www.powerpulse.net/features/techpaper.php?paperID=65.
    [16] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley, 1997.
    [17] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 2001.
    [18] http://users.ece.gatech.edu/~rincon/classes/ece4430/handouts/l39_bg.pdf.
    [19] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526-530, Apr. 2002.
    [20] R. Gregorian, Introduction to CMOS OP-AMP and Comparators, New York: Wiley, 1999.
    [21] B. Sahu and G. A. Rincon-Mora, “A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications,” in Proc. IEEE Int. Conf. on VLSI Design, Jan. 2005, pp.858-861.
    [22] C. Y. Leung, P. K. T. Mok, K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005.
    [23] http://ww1.microchip.com/downloads/en/AppNotes/91081A.pdf
    [24] D. Ma., W. H. Ki, C. Y. Tsui, P. K.T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.

    下載圖示 校內:2007-08-24公開
    校外:2007-08-24公開
    QR CODE