簡易檢索 / 詳目顯示

研究生: 李科賢
Lee, Ko-Shien
論文名稱: 應用ANN-SCE演算法評估自動發電控制效能及估測頻率響應特性值
Application of ANN-SCE Algorithm to the Evaluation of Automatic Generation Control Performance and Frequency Response Characteristic
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 92
中文關鍵詞: 頻率響應特性值系統控制誤差類神經網路自動發電控制
外文關鍵詞: frequency response characteristic, neural network, system control error, automatic generation control
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣目前的負載頻率控制是以自動發電控制 (AGC) 來追隨連續性的負載變動以調節頻率。由於負載的持續變動及機組出力的不確定性,使頻率響應的變動特性相當複雜且不易直接量測。傳統獨立系統二次控制的原理是,利用其偏頻係數 (B)來代理系統的頻率響應特性值 (β) ,計算系統的控制誤差量,以做為二次控制補償的參考,但當B無法真實反應β時,將可能使發電響應不符合調節需求或導致發電機組出力及傳輸線的電力潮流產生不必要的震盪現象。本論文提出以類神經網路系統控制誤差演算法 (ANN-SCE algorithm) 估測頻率響應特性值,若以此估測值做為二次控制補償的參考,將有助於增進AGC在電力調節功能上的效能。此外,在日後電力自由化的環境下,更多的民營發電業者 (IPP) 可參與負載追隨及頻率調節的輔助服務,獨立發電業發電設備的反應特性如何影響負載頻率控制的效能是系統調度員有興趣了解的課題。本論文利用 ANN-SCE 演算法配合先前估測出之 β評估獨立發電業的發電機組對於電力公司發電控制的影響,並於系統模擬做相互驗證,其結果將有助於電力調度中心提升負載頻率控制的效能。

     The load-frequency control in Taiwan still operates with automatic generation control (AGC) to track the continuously varying loads. Due to the sustained variation of loads and the uncertainties in unit movements, the characteristic of system’s frequency response is quite complicated and cannot be directly measured. The conventional operating principle in the secondary control of independent system is to adopt the frequency bias coefficient, B , as a proxy for the frequency response characteristic, β , to calculate the system control error and use it as a reference for control compensation. However, while B is not close to β, system control error might not lead to the required generation response for regulation and cause unnecessary oscillation in unit movements and power flow in the transmission grid. This thesis proposes an artificial neural network based system control error algorithm (ANN-SCE algorithm) to evaluate the frequency response characteristic. The estimated value can be gainfully used for secondary control to improve the AGC performance. Likewise, with more independent power producers (IPPs) joining the load following and frequency regulation services, how to assess IPPs’ unit control performance on system’s load frequency control is the interesting subject that system operators would like to explore. This thesis utilizes estimated β to evaluate the influence of the IPP units on the generation control. The simulation results verify that the assessment is beneficial for dispatch center to enhance load frequency control performance.

    目 錄 頁數 摘要 I 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 1 1.1 研究背景 1 1.2 本研究之貢獻 3 1.3 論文架構 3 第二章 負載頻率控制 5 2.1 同步機的基本運轉方程式 5 2.2 頻率敏感性負載 9 2.3 調速機 11 2.3.1 並聯機組負載的分配 14 2.3.2 調速機實際的速度下降特性 15 2.4 渦輪機 16 2.5 電力系統等效的調節特性 18 2.6 自動發電控制基本原理 20 2.6.1 單區域系統之自動發電控制 20 第三章 類神經網路簡介 22 3.1 類神經網路概論 22 3.1.1 類神經網路之分類 23 3.1.2 類神經網路架構 24 3.1.3 類神經網路之神經元 25 3.1.4 神經元活化函數 26 3.2 類神經網路的訓練學習 27 3.2.1 定義誤差函數 27 3.2.2 梯度演算法則 28 3.2.3 倒傳遞演算法 29 3.2.4 前向運算 30 3.2.5 返向運算 31 3.3 倒傳遞類神經網路之優缺點 39 第四章 應用類神經網路實現系統控制誤差演算法 41 4.1 定義系統控制誤差 41 4.2 系統控制誤差模型 43 4.3 類神經網路系統控制誤差 (ANN-SCE) 演算法 47 4.3.1 類神經網路系統控制誤差演算法執行步驟 48 4.4 模擬分析 51 第五章 頻率響應特性值之估測 57 5.1 頻率響應特性值 57 5.2 頻率響應特性值估測法 58 5.3 未考慮非線性影響和限制條件之 β 估測 59 5.4 非線性因素對於估測法的影響 62 第六章 評估機組調度對於頻率調節效能之影響 65 6.1 前言 65 6.2 非線性因素造成的系統控制誤差 70 6.3 評估負載效應造成的系統控制誤差 72 6.4 頻率響應因素造成的系統控制誤差 73 6.5 討論 76 第七章 結論與未來研究方向 79 7.1 結論 79 7.2 未來研究方向 80 參考文獻 82 附錄 87 作者簡介 92

    參考文獻

    [1]陳躬耕,自動發電功能的解析與操作,台電工程月刊,第504期,中華民國79年8月。
    [2]N. Cohn, Control of Generation and Power Flow on Interconnected Power Systems, Wiley, New York, USA, 1966.
    [3]T. Kennedy, S. M. Hoyt and C. F. Abell, “Variable, nonlinear time-line frequency bias for interconnected system control,” IEEE Transaction on Power Systems, Vol. 3, No. 3, pp. 1244-1253,August 1988.
    [4]Policy 1 Generation Control and Performance, Version 1a, North American Electric Reliability Council, 2000.
    [5]N. Jaleeli, L. S. VanSlyck, D. N. Ewart, L. H. Fink and A. G. Hoffman, “Understanding automatic generation control,” IEEE Transaction on Power Systems, Vol. 7, No. 3, pp. 1106-1122,August 1992.
    [6]L.-R. Chang-Chien, N.-B. Hoonchareon, C.-M. Ong and R. A. Kramer, “Estimation of β for adaptive frequency bias setting in load frequency control,” IEEE Transaction on Power Systems, Vol. 18, No. 2, pp. 904-911, May 2003.
    [7]L.-R. Chang-Chien, An Automatic Generation Control with Adaptive Frequency Bias Setting for Current NERC Performance Standard, Ph.D. dissertation, Purdue University, West Lafayettte, IN, 2002.
    [8]N.-B. Hoonchareon, C.-M. Ong and R. A. Kramer, “Implementation of an ACE decomposition method,” IEEE Transaction on Power Systems, Vol. 17, No. 3, pp. 757-761, August 2002.
    [9]N.-B. Hoonchareon, Feasibility of Decomposing One-Minute Average Area Control Error for Apportioning Load-Frequency Regulation Costs, Ph.D. dissertation, Purdue University, West Lafayette, IN, 2000.
    [10]N.-B. Hoonchareon, C.-M. Ong and R. A. Kramer, “Feasibility of decomposing ACE to identify the impact of selected loads on CPS1 and CPS2,” IEEE Transaction on Power Systems, Vol. 17, No. 3, pp. 752-756, August 2002.
    [11]A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, Second edition, John Wiley & Sonc Inc., New York, USA, 1996.
    [12]P. Kundar, Power System Stability and Control, McGraw-Hill, New York, USA, 1994.
    [13]C. A. Gross, Power System Analysis, Wiley, New York, USA, 1986.
    [14]H. Saadat, Power System Analysis, McGraw-Hill, Boston, USA, 2002.
    [15]R. Bergen, Power Systems Analysis, Prentice-Hall, New Jersey, USA, 1986.
    [16]J. J. Grainger and W. D. Stevenson Jr., Power System Analysis, McGraw-Hill, Boston, USA, 1994.
    [17]J. D. Glover and M. Sarma, Power System Analysis and Design, International Thomson Publishing, London, England, 1987.
    [18]IEEE Committee Report, “Dynamic models for steam and hydro turbines in power system studies,” IEEE Transaction on Power Apparatus and Systems, pp. 1904-1915, November 1973.
    [19]F. P. de Mello, “Dynamic models for fossil fueled steam units in power system studies,” IEEE Transaction on Power Systems, Vol. 6, No. 2, pp. 753-761, May 1991.
    [20]L. D. Douglas, T. A. Green and R. A. Kramer, “New approaches to the AGC nonconforming load problem,” Power Industry Computer Application Conference, pp. 48-57, May 1993.
    [21]R. R. Shoults, M. Yao, R. Kelm and D. Maratukulam, “Improved system AGC performance with arc furnace steel mill loads,” IEEE Transaction on Power Systems, Vol. 13, No. 2, pp. 630-635, May 1998.
    [22]R. K. Green, “Transformed automatic generation control,” IEEE Transaction on Power Systems, Vol. 11, No. 4, pp. 1799-1804, November 1996.
    [23]G. L. Kusic, J. A. Sutterfield, A. R. Caprez, J. L. Haneline and B. R. Bergman, “Automatic generation control for hydro systems,” IEEE Transactions on Energy Conversion, Vol. 3, No. 1, pp. 33-39, July 2003.
    [24]L. S. VanSlyck, N. Jaleeli and W. R. Kelley, “A comprehensive shakedown of an automatic generation control process,” IEEE Transaction on Power Systems, Vol. 4, No. 2, pp. 771-781, May 1979.
    [25]葉怡成,類神經網路模式應用與實作,儒林圖書,民國92年3月。
    [26]S. S. Haykin, Neural Networks :A Comprehensive Foundation, Macmillan, New York, USA, 1994.
    [27]E. K. P. Chong and S. H. Zak, An Introduction to Optimization, John Wiley & Sons, New York, USA, 1996.
    [28]吳駖,MATLAB 6.X與基礎自動控制,文魁資訊公司,民國92年2月。
    [29]張智星,MATLAB 程式設計與應用,清蔚科技股份有限公司,民國92年4月。
    [30]C.-M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK, Prentice-Hall, NJ, USA, 1998.
    [31]陳躬耕,電力供需平衡供需機制,電機月刊,第151期,中華民國92年7月。
    [32]L.-R. Chang-Chien, C.-M. Ong and R. A. Kramer, “Field tests and refinements of an ace model,” IEEE Transaction on Power Systems, Vol. 18, No. 2, pp. 898-903, May 2002.
    [33]D. T. Pham and X. Liu, Neural Networks for Identification, Prediction and Control, Springer-Verlag, London, England, 1995.
    [34]K. S. Narendra and K. Parthasarathy, “ Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27, March 1990.
    [35]D. H. Nguyen and B. Widrow, “Neural networks for self-learning control systems,” IEEE Control Systems Magazine, Vol. 10, No. 3, pp. 18-23, April 1990.
    [36]Q. H. Wu, B. W. Hogg and G. W. Irwin, “ A neural network regulator for turbogenerators,” IEEE Transactions on Neural Networks, Vol. 3, No. 1, pp. 95-100, January 1992.
    [37]N. Jaleeli and L. S. VanSlyck, “Tie-line bias prioritized energy control,” IEEE Transactions on Power Systems, Vol. 10, No. 1, pp. 51-59, February 1995.
    [38]L. S. VanSlyck, N. Jaleeli and W. R. Kelly, “Implications of frequency control bias settings on Interconnected system operation and inadver¬tent energy accounting,” IEEE Transactions on Power Systems, Vol. 4, No. 2, pp. 712-723, May 1989.
    [39]P. Shamsollahi and O. P. Malik, “Real-time implementation and experimental studies of a neural adaptive power system stabilizer, ” IEEE Transactions on Energy Conversion, Vol. 14, No. 3, pp.737-742, September 1999.
    [40]P. Shamsollahi and O. P. Malik, “An adaptive power system stabilizer using on-line trained neural networks,” IEEE Transactions on Energy Conversion, Vol. 12, No. 4, pp.382-387, December 1997.

    下載圖示 校內:2010-07-21公開
    校外:2015-07-21公開
    QR CODE