簡易檢索 / 詳目顯示

研究生: 董哲維
Tung, Che-Wei
論文名稱: 使用低溫多晶矽薄膜電晶體之面板驅動電路設計
Design of Driver Circuits for Display Using Low-Temperature Poly-Silicon TFTs
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 低溫多晶矽製程源極隨耦器共電極驅動電路
外文關鍵詞: Low-Temperature Poly-Silicon, Source Follower, Common Electrode Driving Circuit
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低溫多晶矽製程電路整合於主動式液晶顯示器是目前面板設計的主流趨勢。然而製程環境上的差異會造成元件特性如臨界電壓產生變異,進而影響到驅動電路的穩定度,並造成顯示器畫面的品質下降。因此本論文將提出三個不受低溫多晶矽元件特性變異所影響的驅動電路架構,並以模擬分析電路之特性。
    本論文首先針對低溫多晶矽薄膜電晶體進行電晶體特性曲線的量測,利用量測結果輔以模擬軟體進行模組化匹配驗證設計之電路的可靠性。第一個電路是本實驗室先前所提出之源極隨耦器型類比緩衝電路。由模擬結果顯示,此電路的輸入輸出誤差在 0.12 V以內;而以臨界電壓變異範圍在 0.33 V的蒙地卡羅分析中,產生的誤差在 0.16 V以內。此外,本論文針對電路之模擬結果分析其非理想效應,並歸納出可能造成誤差的四個因素,藉由適當調變電路中之耦合電容值及電晶體寬長比,更進一步驗證電路的穩定度。第二個電路則為一個新式自我補償之源極隨耦器電路。此電路利用主動負載將補償電壓紀錄在驅動電晶體之閘極端,並消除輸出端的次臨界電流現象。由模擬結果可發現,新式架構的驅動電晶體閘極端不會產生電荷累積的情形,而最大輸入輸出誤差為 0.16 V;而蒙地卡羅分析所得到最大的誤差電壓為 0.25 V。第三個電路則應用於低功耗面板設計之共電極驅動電路,此電路以精簡的架構設計避免多餘的功率消耗及佈局負擔。由模擬結果可發現此電路於操作階段不會產生靜態電流,可確保電路的低功率消耗。另一方面,針對線反轉及點反轉電路架構的驅動能力模擬檢測可發現線反轉架構在 20 pF到 200 pF的負載下操作時,最差的輸出電壓誤差為 0.06 V,而點反轉架構則可改善至 0.08 V以下。

    Implementing circuit systems on the active matrix liquid crystal display (AMLCD) using low-temperature poly-silicon thin-film transistors (LTPS TFTs) has become a dominant trend in recent years. However, the variations of TFT electrical characteristics caused by the errors of fabrication processes might influence the stability of driver circuits. This defect might deteriorate the video quality of the display. The work proposes three driver circuits for flat panel display which are immune to the characteristic variations of LTPS TFTs. The feasibility of the proposed circuits will be verified through simulation and analysis.
    In this work, the electrical characteristics of the LTPS TFTs are measured for SPICE modeling to verify the effectiveness and reliability of the proposed circuits. The first proposed circuit is the source follower type analog buffer as announced by our laboratory. The simulation results show that the offset voltages are distributed within 0.12 V, and within 0.16 V in the worst case of Monte Carlo analysis, where the threshold voltage variation of LTPS TFT is set to 0.33 V. Additionally , the non-ideal factors generating error output of this circuit during operation are analyzed, and four main factors are concluded. Finally, the output error can be reduced by properly modulating the size of the coupling capacitor and the size of the specific transistor. The second proposed circuit is a source follower type analog buffer using a new self-compensating method. In this circuit, the active load is applied to the gate of the driving TFT for memorizing compensated voltage, and to the source of the driving TFT for eliminating the sub-threshold current. From the simulation, the gate voltages remain steady during the whole output period. The offset voltages are distributed within 0.16 V, and within 0.25 V in the worst case of Monte Carlo analysis. The third proposed circuit is a common electrode driving circuit design for a low-power panel system. The simple circuit structure has the advantages of maintaining low power consumption during the operating period and saving layout area. The simulation results show that no steady current is generated in this circuit during operation. Therefore, the circuit is able to be applied to low-power panel design. The performance of this circuit is investigated by simulating the driving capability on a 3•3 pixel array. The line inversion scheme performs an offset error below 0.06 V with capacitance loading varied from 20 pF to 200 pF, and the dot inversion scheme can perform an offset error below 0.08 V after optimization of circuit parameters.

    摘 要 i Abstract ii 致謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第 一 章 緒論 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構介紹 8 第 二 章 適用於薄膜電晶體製程之源極隨耦器電路介紹 2.1 自我補償式電路架構介紹 9 2.2 特性匹配式電路架構介紹 12 第 三 章 源極隨耦器電路之模擬與電路特性探討 3.1 電路架構與操作 16 3.2 元件特性量測與電路模擬 19 3.3 誤差分析與電路特性探討 25 3.4 電路之優缺點 29 第 四 章 新式源極隨耦器電路設計與模擬 4.1 電路架構與操作 31 4.2 電路模擬 35 4.3 電路之優缺點 40 第 五 章 共電極驅動電路設計與模擬 5.1 電路架構與操作 42 5.2 電路模擬 47 5.3 電路之優缺點 55 第 六 章 結論與未來展望 6.1 結論 56 6.2 未來展望 57 參考文獻 58

    [1] 戴亞翔,TFT-LCD面板的驅動與設計,五南書局,2006.
    [2] D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
    [3] S. H. Jung, W. J. Nam, C. W. Han, and M. K. Han, “A New Low Power PMOS Poly-Si Inverter and Driving Circuits for Active Matrix Displays,” in SID Tech. Dig., pp. 1396-1399, 2003.
    [4] Y. M. Ha, S. K. Hong, H. Jeong, J. D. Park, B. K. Kim, and W. Y. Kim, “P-Type Low-Power Low-Temperature TFT-LCDs,” in SID Tech. Dig., pp. 1080-1083, 2004.
    [5] W. J. Nam, S. H. Jung, J. H. Lee, H. J. Lee, and M. K. Han, “A Low-Voltage P-type Poly-Si Integrated Driving Circuits for Active Matrix Display,” in SID Tech. Dig., pp. 1046-1049, 2005.
    [6] C. L. Lin, C. D. Tu, M. C. Chuang, and J. S. Yu, “Design of Bidirectional and Highly Stable Integrated Hydrogenated Amorphous Silicon Gate Driver Circuits.” IEEE Journal of Display Technology, vol. 7, no. 1, pp. 10-18, January 2011.
    [7] C. H. Kim, S. J. Yoo, H. J. Kim, K. P. Hong, S. J. An, J. M. Jun, and J. Y. Lee, “High-Resolution Integrated a-Si Row Driver Circuits,” in SID Tech. Dig., pp. 939-941, 2005.
    [8] J. H. Oh, J. H. Hur, Y. D. Son, K. M. Kim, S. H. Kim, E. H. Kim, J. W. Choi, S. M. Hong, J. O. Kim, B. S. Bae, and J. Jang, “2.0 Inch a-Si:H TFT-LCD with Low Noise Integrated Gate Driver,” in SID Tech. Dig., pp. 942-945, 2005.
    [9] T. H. Hwang, S. I. Hong, W. K. Hong, W. H. Cui, I. S. Yang, and O. K. Kwon, “A Scan Driver Circuit Using Transparent Thin Film Transistors,” in SID Tech. Dig., pp. 1136-1139, 2009.
    [10] Ruquiya and I. A. Huq, “Phase Clocked Shift Register With Cross Connecting Between Stages,” U.S. Patent 5, 434, 488, 1995.
    [11] H. Lebrun, T. Kretz, J. Magarino, and N. Szydlo, “Design of Integrated Drivers with Amorphous Silicon TFTs for Small Displays Basic Concepts,” in SID Tech. Dig., pp. 950-953, 2005.
    [12] H. Lebrun, N. Szydlo, and E. Bidal, “Threshold Voltage Drift of Amorphous Silicon TFT in Integrated Drivers for Active Matrix LCDs,” in EuroDisplay, pp. 83-85, 2002.
    [13] Y. H. Jang, S. Y. Yoon, B. Kim, M. D. Chun, H. N. Cho, N. W. Cho, C. D. Kim, and I. J. Chung, “Integrated Gate Driver Circuit Using a-Si TFT with Dual Pull Down Structure,” in IDW Dig., pp. 333-336, 2004.
    [14] S. Y. Yoon, Y. H. Jang, B. Kim, M. D. Chun, H. N. Cho, N. W. Cho, C. Y. Sohn, S. H. Jo, C. D. Kim, and I. J. Chung, “Highly Stable Integrated Gate Driver Circuit Using a-Si TFT with Dual Pull-Down Structure,” in SID Tech. Dig., pp.348-351, 2005.
    [15] S. Edo, M. Wakagi, and S. Komura, “QVGA a-Si TFT LCD with High Reliability Integrated Gate Driver,” in SID Tech. Dig., pp. 1551-1554, 2006.
    [16] G. R. Chaji, and A. Nathan, “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays,” IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1095-1100, May 2007.
    [17] S. M. Venugopal and D. R. Allee, “Integrated a-Si:H Source Drivers for 4”QVGA Electrophoretic Display on Flexible Stainless Steel Substrate,” Journal of the Society for Information Display, vol. 3, no. 1, pp. 57-63, March 2007.
    [18] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Chen, “A New Pixel Circuit for Driving Organic Light-Emitting Diode with Low Temperature Polycrystalline Silicon Thin-Film Transistors,” IEEE Journal of Display Technology, vol. 1, no. 1, pp. 100-104, September 2005.
    [19] Y. Toyota, M. Matsumura, M. Hatano, T. Shiba, and M. Okura, “A New Study on the Degradation Mechanism in Low-Temperature P-Chanel Polycrystalline Silicon TFTs Under Dynamic Stress,” IEEE Transaction on Electron Devices, vol. 53, no. 9, pp. 2280-2286, September 2006.
    [20] C. L. Lin and Y. C. Chen, “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Electron Device Letters, vol. 28, no. 2, pp. 129-131, February 2007.
    [21] C. L. Lin and T. T. Tsai, “A Novel Voltage Driving Method Using 3-TFT Pixel Circuit for AMOLED,” IEEE Electron Device Letters, vol. 28, no. 6, pp. 489-491, June 2007.
    [22] H. Y. Lu, T. C. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A New Pixel Circuit Compensating for Brightness Variation in Large Size and High Resolution AMOLED Displays,” IEEE Journal of Display Technology, vol. 3, no. 4, pp. 398-403, December 2007.
    [23] Y. L. Tai, J. W. Lee, and C. H. Lien, “An Investigation of Eletrothermal Characteristics on Low-Temperature Polycrystalline-Silicon Thin-film Transistors,” IEEE Electron Device Letters and Material Reliability, vol. 10, no. 1, March 2010.
    [24] S. M. Venugopal, R. Shringarpure, D. R. Allee, and S. M. O'Rourke, “Integrated a-Si:H Source Drivers for Electrophoretic Displays on Flexible Plastic Substrates,” in Flexible Electronics and Displays Conference and Exhibition, pp. 1-5, 2008.
    [25] S. H. Jung, W. J. Nam, J. H. Lee, and M. K. Han, “A New Analog Buffer Using P-Type Poly-Si TFTs for Active Matrix Displays,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 40-42, September 2006.
    [26] S. Z. Huang and Y. H. Tai, “A New Evaluation Method of The Threshold Voltage for A Low Temperature Poly-Silicon Thin Film Transistor in A Source Follower Configuration,” in IDMC, pp. 442-444, 2005.
    [27] H. J. Chung, S. W. Lee, and C. H. Han “Poly-Si TFT Push-Pull Analogue Buffer for Integrated Data Drivers of Poly-Si TFT-LCDs,” IET Electronics Letters, vol. 37, no. 17, pp. 1093-1095, August 2001.
    [28] Y. S. Yoo, J. Y. Choi, H. S. Shim, and O. K. Kwon, “A High Accurate Analog Buffer Circuit Using Low Temperature Poly-Si TFT,” in SID Tech. Dig., pp. 1460-1463, 2004.
    [29] Y. H. Tai, C. C. Pai, B. T. Chen, and H. C. Cheng, “A Source-Follower Type Analog Buffer Using Poly-Si TFTs With Large Design Windows,” IEEE Electron Device Letters, vol. 26, no. 11, pp. 811-813, November 2005.
    [30] I. Pappas, S. Siskos, and C. A. Dimitriadis, “A New Analog Buffer Using Low-Temperature Polysilicon Thin-Film Transistors for Active-Matrix Displays,” IEEE Transactions on Electron Devices, vol. 54, no. 2, pp. 219-224, February 2007.
    [31] I. Pappas, S. Siskos, and C. A. Dimitriadis, “A Fast and Compact Analog Buffer Design for Active Matrix Liquid Crystal Displays Using Polysilicon Thin-Film Transistors,” IEEE Transactions on Circuits and Systems – Ⅱ:Express Briefs, vol. 55, no. 6, pp. 537-540, June 2008.
    [32] E. Takeda, Y. Nanno, and S. Nagata, “Method of Driving Display Unit,” U.S. Patent 5,296,847, 1994.
    [33] T. J. Wood and B. A. Dickey, “Common Electrode Voltage Driving Circuit For A Liquid Crystal Display,” U.S. Patent 5,926,162, 1999.
    [34] Y. Kobayashi, A. Kuroda, and K. Sekiya, “Common Electrode Driving Device In A Liquid Crystal Display,” U.S. Patent 6,094,192, 2000.
    [35] M. Senda, Y. Tsutsui, R. Yokoyama, K. Yoneda, S. Matsumoto, and A. Sasaki, “Ultra-Low-Power Polysilicon AMLCD with Full Integration,” in SID Tech. Dig., pp. 790-793, 2002.
    [36] M. Senda, K. Hirosawa, Y. Tsutsui, M. Kobayashi, and R. Yokoyama, “New Dot-Inversion Driving Method for Low Power Consumption LTPS TFT LCDs,” in SID Tech. Dig., pp. 976-979, 2004.
    [37] M. Senda, K. Hirosawa, and R. Yokoyama, “Display Device,” U.S. Patent 7,646,370, 2010.
    [38] M. Senda, K. Hirosawa, and R. Yokoyama, “Display Device,” U.S. Patent 7,696,960, 2010.
    [39] H. Jeong, M. Mativenga, J. Jang, S. G. Lee, and Y. M. Ha, “Design of A Low Power Consumption a-IGZO TFT-based Vcom Driver Circuit with Long-Term Reliability,” in SID Tech. Dig., pp. 338-341, 2011.

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE