簡易檢索 / 詳目顯示

研究生: 吳冠賢
Wu, Kuan-hsien
論文名稱: 使用離散餘弦轉換域預測演算法之H.264內框編碼器設計及硬體架構實現
VLSI Implementation of H.264/AVC Intra Coding with a Fast DCT-Domain Prediction Algorithm
指導教授: 楊家輝
Yang, Jar-ferr
劉濱達
Liu, Bin-da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 93
中文關鍵詞: 內框編碼內框決策機制的演算法離散餘弦
外文關鍵詞: dct domain, intra coding, fast mode decision algorithm, SAITD
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個適用於H.264內框決策機制的演算法來增進編碼的效能,此決策機制藉由分析離散餘弦轉換係數來偵測區塊內部的紋理方向以減少內框編碼中所需要的模式個數,進而大量地減少編碼所需的計算量。除此之外,在採用整數離散餘弦時域階梯近似矩陣計算法(SAITD)的特性下,整個內框編碼的效能也得到相當的改進。在與許多現今的相關研究比較之下,此演算法可完全被整合在內框編碼器中而並非只是單純的前置處理單元。經模擬結果中可知,本論文所提出的演算法減少約60%的編碼計算量並且僅伴隨著非常微小的影像品質降低。在失真率上僅僅減少了約0.05 dB而位元率上也只增加了約1%的負擔。根據上述的SAITD和本演算法,本論文亦提出一個新的內框編碼架構來增進編碼效率,此一編碼架構包含了內框預測器、模式決定器以及整個內框影像重建所需要的模組。在模擬合成後,所提出的全部架構需要的電路面積是123.6k;最大的操作頻率可以達100 MHz,且對一個大區塊(MB)而言,整個內框編碼所需的循環數(cycle)約為其他設計的60%。這樣的處理速度可以達到即時處理4:2:0的格式、每秒30張畫面且解析度為1080 HD大小的影像。

    In this thesis, a fast mode decision algorithm is proposed to increase the coding efficiency for H.264/AVC intra prediction. Based on the inherent feature of Discrete Cosine Transform (DCT), the results of the transformed input blocks are analyzed to determine the direction of the edges. Only a few of prediction modes are chosen for cost calculation. Moreover, the coding performance is improved by the benefits of sum of absolute integer-transform differences (SAITD). A novel intra coding structure is also proposed based on the SAITD methodology and proposed mode decision algorithm. In comparison with the previous fast algorithms, the proposed method is integrated into the intra coding procedure rather than performed as a pre-processor. Experimental results reveal the proposed algorithm approximately reduces the encoding time by 60% with negligible PSNR degradation and slight bit-rate increment. The proposed intra coding system, which consist of intra prediction, mode decision, and reconstruction loop, easily supports the real-time requirement for resolutions up to the 1080 HD format by operating at 100Hz.

    Table of Contents i Abstract v List of Tables vi List of Figures vii CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Organization for the Thesis 4 CHAPTER 2 Intra Mode Decision Algorithm 5 2.1 Basic Concepts for CODEC of H.264/AVC 5 2.2 Basic Concepts for Intra Prediction 7 2.3 Intra_Luma_4×4 Prediction Mode Directions 8 2.3.1 Intra_Luma_4×4_Vertical prediction mode (Mode 0) 10 2.3.2 Intra_Luma_4×4_Horizontal prediction mode (Mode 1) 10 2.3.3 Intra_Luma_4×4_DC prediction mode (Mode 2) 11 2.3.4 Intra_Luma_4×4_Diagonal_Down_Left prediction mode (Mode 3) 12 2.3.5 Intra_Luma_4×4_Diagonal_Down_Right prediction mode (Mode4) 13 2.3.6 Intra_Luma_4×4_Vertical_Right prediction mode (Mode 5) 14 2.3.7 Intra_Luma_4×4_Horizontal_Down prediction mode (Mode 6) 15 2.3.8 Intra_Luma_4×4_Vertical_Left prediction mode (Mode 7) 16 2.3.9 Intra_Luma_4×4_Horizontal_Up prediction mode (Mode 8) 17 2.4 Intra_Luma_16×16 Prediction Modes 18 2.5 Intra_Chroma Prediction Modes 19 2.5.1 Intra_Chroma_DC prediction mode 20 2.5.2 Intra_Chroma_Plane prediction mode 22 2.6 Cost Function 22 CHAPTER 3 Proposed DCT Domain Fast Intra Mode Decision Algorithm 24 3.1 Characteristic of Transform Function 24 3.2 Intra_Luma_4×4 Prediction 27 3.2.1 DC mode 29 3.2.2 AC mode 30 3.2.2.1 Diagonal direction 30 3.2.2.2 Vertical and horizontal direction 32 3.2.3 Most probable mode 33 3.2.4 Summary 34 3.3 Intra_Luma_16×16 Prediction 35 3.4 Intra_Chroma Prediction 39 3.5 SAITD Methodology 41 3.5.1 Distortion evaluation 41 3.5.2 Processing structure 42 CHAPTER 4 VLSI Implementation for DCT-Domain Intra Coding 45 4.1 Overview 45 4.2 Forward Transform 46 4.3 Prediction Generator 48 4.4 Reconstruction Loop 53 4.5 Register Array 55 4.6 System Controller 56 4.6.1 Procedure of Luma_4×4 57 4.6.2 Procedure of decomposed Luma_16×16 59 4.6.3 Procedure of Intra_Chroma 61 4.7 Timing Analysis 63 CHAPTER 5 Simulation Results and Comparisons 64 5.1 Simulation Results 64 5.1.1 Threshold value determination 66 5.1.2 RDO enabled 70 5.1.3 RDO disabled 80 5.2 Synthesis Results 83 5.3 Verification 85 CHAPTER 6 Conclusions and Future Work 87 6.1 Conclusions 87 6.2 Future Work 88 Reference 89 Publications 93

    [1] Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s – Part2: Video, ISO/IEC 11172, 1993.
    [2] Information Technology – Generic Coding of Moving Pictures and Associated Audio Information: Video, ISO/IEC 13818-2 and ITU-T Rec. H.262, 1996.
    [3] Information Technology – Coding of Audio-Visual Objects – Part2: Visual, ISO/IEC 14496-2, 1999.
    [4] Video Codec for Audiovisual Services at px64 kbits/s, ITU-T Rec. H.261 v1, 1990.
    [5] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, 1998.
    [6] Joint Video Team, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.
    [7] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algorithms and Architectures. Boston, MA: Kluwer Academic, 1997.
    [8] Y. W. Huang, B. Y. Hsieh, T. C. Chen, and L. G. Chen, “Analysis, fast algorithm and VLSI architecture design for H.264/AVC intra-frame coder,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 378-401, Mar. 2005.
    [9] F. Pan, X. Lin, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode decision algorithm for intraprediction in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 813-822, July 2005.
    [10] M. Jafari and S. Kasaei, “Fast intra-prediction mode decision in H.264 advanced video coding,” in Proc. IEEE ICCS, Oct. 2006, pp. 1-6.
    [11] C. L. Hsu, M. H. Ho, and J. J. Hong, “An efficient algorithm for intra-prediction in H.264,” in Proc. IEEE ICCE, Jan. 2006, pp. 35-36.
    [12] J. W. Chen, C. H. Chang, C. C. Lin, Y. H. Ouyang, J. I. Guo, and J. S. Wang, “A condition-based intra prediction algorithm for H.264/AVC,” in Proc. IEEE ICME, July 2006, pp. 1077-1080.
    [13] J. C. Wang, J. F. Wang, J. F. Yang, and J. T. Chen, “A fast mode decision algorithm and its VLSI design for H.264/AVC intra-prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 1414-1422, Oct. 2007.
    [14] A. C. Tsai, A. Paul, J. C. Wang, and J. F. Wang, “Intensity gradient technique for efficient intra-prediction in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, pp. 694-698, May 2008.
    [15] Y. C. Wei and J. F. Yang, “Transformed-domain intra mode decision in H.264/AVC encoder,” in Proc. IEEE TENCON, Nov. 2006, pp. 1-4.
    [16] T. Tsukuba, I. Nagayoshi, T. Hanamura, and H. Tominaga, “H.264 fast intra-prediction mode decision based on frequency characteristic,” in Proc. EUSIPCO, Sep. 2005.
    [17] T. Hattori and K. Ichige, “Intra-prediction mode decision in H.264/AVC using DCT coefficients,” in Proc. IEEE ISPACS, Dec. 2006, pp. 135-138.
    [18] Z. Wang, J. Yang, Q. Peng, Z. Ma, and C. Zhu, “A fast transform domain based algorithm for H.264/AVC intra prediction,” in Proc. IEEE ICME, July 2007, pp. 1563-1566.
    [19] G. Hwang, J. Park, B. Jung, K. Choi, Y. Joo, Y. Oh, and B. Jeon, “Efficient fast intra mode decision using transform coefficients,” in Proc. IEEE ICACT, Feb. 2007, pp. 399-402.
    [20] H. Li, K. N. Ngan, and Z. Wei, “Fast and efficient method for block edge classification and its application in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, pp. 694-698, May 2008.
    [21] B. Meng, O. C. Au, C. W. Wong, and H. K. Lam, “Efficient intra-prediction mode selection for 44 blocks in H.264,” in Proc. IEEE ICME, July 2003, pp. 521-524.
    [22] Y. N. Sairam. N. Ma, and N. Sinha, “A novel partial prediction algorithm for fast 44 intra prediction mode decision in H.264/AVC,” in Proc. IEEE DCC, Mar. 2008, pp. 232-241.
    [23] Joint Video Team, H.264/AVC Reference Software, version 12.0, Aug. 2007. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/old_jm/
    [24] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithm, Advantages, Applications. London, UK: Academic Press, 1990.
    [25] C. H. Tseng, H. M. Wang, and J. F. Yang, “Improved and fast algorithm for intra 44 mode decision in H.264/AVC,” in Proc. IEEE ISCAS, May 2005, pp. 2128-2131.
    [26] C. H. Tseng, H. M. Wang, and J. F. Yang, “Enhanced intra-44 mode decision for H.264/AVC coders,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 1027-1032, Aug. 2005.
    [27] Z. Y. Cheng, C. H. Chen, B. D. Liu, and J. F. Yang, “High throughput 2-D transform architecture for H.264 advanced video coders,” in Proc. IEEE APCCAS, Dec. 2004, pp. 1141-1144.
    [28] E. Sahin and I. Hamzaoglu, “An efficient hardware architecture for H.264 intra prediction algorithm,” in Proc. IEEE DATE, Apr. 2007, pp. 1-6.
    [29] E. Sahin and I. Hamzaoglu, “An efficient intra prediction hardware architecture for H.264 video decoding,” in Proc. IEEE DSD, Aug. 2007, pp. 448-454.
    [30] G. Jin, J. S. Jung, and H. J. Lee, “An efficient pipelined architecture for H.264/AVC intra frame processing,” in Proc. IEEE ISCAS, May 2007, pp. 1605-1608.
    [31] S. B. Wang, X. L. Zhanq, Y. Yao, and Z. Wang, “H.264 intra prediction architecture optimization,” in Proc. IEEE ICME, July 2007, pp. 1571-1574.
    [32] G. Bjontegaard, “Calculation of PSNR differences between RD curves,” VCEG-M33, Apr. 2001.
    [33] C. W. Ku, C. C. Cheng, G. S. Yu, M. C. Tsai, and T. S. Chang, “A high-definition H.264/AVC intra-frame codec IP for digital video and still camera applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 917-928, Aug. 2006.
    [34] K. Suh, S. Park, and H. Cho, “An efficient hardware architecture of intra prediction and TQ/IQIT module for H.264 encoder,” ETRI Journal, vol. 27, pp. 511-524, Oct. 2005.

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE