簡易檢索 / 詳目顯示

研究生: 許昀傑
Hsu, Yun-Chieh
論文名稱: 家電產品功因修正電路之設計與實現
Design and Implementation of Power Factor Correction Circuits for Home Appliances
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 103
中文關鍵詞: 電磁干擾諧波失真功因修正非對稱脈波寬度調變
外文關鍵詞: electro-magnetic interference, power-factor-correction, total harmonic distortion
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高頻主動式功因修正電路近來廣泛應用於電源供應器及照明設備等電器產品,此架構具有體積小、高功因及低諧波失真等優點。但由於切換頻率高,因此有嚴重的電磁干擾問題及控制迴路設計複雜等缺點。對於產品空間體積及諧波限制較不嚴格的家電產品而言,如冷氣機、冰箱及洗衣機等變頻電器調速系統,如何在法規限制及成本考量下取得平衡為重要的研究議題。本論文針對一般變頻家電系統提出一種高功因及低電流諧波失真之低頻非對稱脈波寬度調變主動式功因修正電路,藉由低頻切換方式,避免高頻切換所產生的電磁干擾問題。與高頻式功因修正電路比較,本論文所提之方法具有控制簡單、容易實現及穩定度高等優點,並且可達到相關家電諧波法規要求,適合應用於多數家電變頻調速系統。由理論分析、電腦模擬與實驗結果皆證實,本論文所提出之低頻非對稱脈波寬度調變主動式功因修正電路確實可行。

    Recently, high-frequency active power factor correction (PFC) circuits have been extensively applied to various electric products, such as switching power supply and various lighting equipments. High frequency PFC circuits provide benefits such as small size, high power factor, low total harmonics distortion, etc. However, there are several inherent drawbacks, e.g. serious electromagnetic interference (EMI) problems and complex compensator design. The regulation of the power quality for home appliances such as air conditioner, refrigerator, washing machine, etc., is not as strict as lighting equipments. Therefore, the high frequency PFC circuits may not be the best solution when considers the cost, volume, and regulation for most variable speed control home appliances. This thesis presents a high power factor and low current harmonic distortion PFC circuit based on the so-called low-frequency asymmetric pulse width modulation (Asy-PWM). Compared with the high frequency PFC circuit, the proposed method has several advantages, such as easy to control/implement, high reliability, and elimination of the heavy EMI filters. Moreover, it is complied with the IEC 1000-3-2 regulation. These attractive features suggest that the proposed method is very suitable for most variable speed control home appliances. The theoretical analysis, computer simulation and experimental results have demonstrated the effectiveness of the proposed method.

    中文摘要...........................................................I 英文摘要...........................................................II 誌謝...............................................................IV 目錄...............................................................V 表目錄.............................................................IX 圖目錄.............................................................XI 符號表.............................................................XVI 第一章 緒論........................................................1 1.1 研究動機..................................................1 1.2 文獻回顧..................................................3 1.3 研究目的..................................................5 1.4 論文架構..................................................6 第二章 功率因數修正電路之工作原理及分類............................8 2.1 前言......................................................8 2.2 功率因數再定義............................................9 2.3 被動式功因修正電路之工作原理與分類........................10 2.3.1 被動式功因修正電路工作原理................................10 2.3.2 被動式功因修正電路分類....................................11 A. 串聯共振帶通功因修正電路..................................12 B. 並聯共振帶拒功因修正電路..................................13 2.4 主動式功因修正電路之工作原理與分類........................15 2.4.1 主動式功因修正電路工作原理................................15 2.4.2 主動式功因修正電路分類....................................15 A. 連續導通模式..............................................17  磁滯電流控制法............................................17  峰值電流控制法............................................19  平均電流控制法............................................20  非線性載波控制法..........................................21  單一週期控制法............................................22 B. 不連續導通模式............................................23  電壓隨耦控制法............................................23 2.4.3 低頻主動式功因修正電路工作原理............................24 第三章 高頻主動式功因修正電路之設計與實現..........................26 3.1 平均電流控制功率因數修正電路..............................26 3.1.1 功率因數修正電路—電流迴路設計............................27 3.1.2 功率因數修正電路—前饋迴路設計............................30 3.1.3 功率因數修正電路—電壓迴路設計............................32  電壓迴路介紹..............................................32  電壓迴路頻寬選取..........................................32  輸出電壓迴路轉移函數推導與補償器設計......................34 3.2. 單一週期控制功率因數修正電路..............................39 3.2.1 單一週期控制法基本原理....................................40 3.2.2 功率因數修正電路—電流迴路設計............................42 3.2.3 功率因數修正電路—電壓迴路設計............................42 3.3 模擬與比較................................................46 3.3.1 平均電流控制法............................................46 3.3.2 單一週期控制法............................................50 第四章 低頻功因修正電路與非對稱脈波寬度調變功因修正電 路之設計與實現..............................................54 4.1 前言......................................................54 4.2 輸出電容與儲能電感的選取..................................55 4.2.1 輸出電容的選取............................................55 4.2.2 儲能電感的選取............................................56 4.3 功率開關導通與延遲時間的探討..............................56 4.3.1 低頻切換主動式功因修正電路理論分析........................56 4.3.2 功率開關導通時間---Ton ...................................57 4.3.3 功率開關延遲時間---Td ....................................61 4.4 低頻非對稱脈波寬度調變功因修正轉換電路....................62 4.4.1 非對稱脈波寬度調變功率開關時間的探討與設計................63 4.4.2 第二組功率開關導通Ton2與延遲時間Td2設計...................64 第五章 硬體架構與實驗結果..........................................66 5.1 硬體架構..................................................66 5.1.1 MOSFET閘極驅動電路........................................66 5.1.2 相位控制電路..............................................67 5.1.3 永磁同步馬達調速驅動器系統................................69 5.2 L-C被動式功因修正電路.....................................69 5.3 非對稱脈波寬度調變功因修正電路............................72 5.3.1 導通時間與延遲時間的選取..................................72 5.3.2 第一組PWM信號模擬與實測結果...............................74  IsSpice電路模擬...........................................74  實際電路測試..............................................79  模擬結果與實際電路波形比較................................83 5.3.3 第二組PWM信號模擬與實測結果...............................83  IsSpice電路模擬...........................................83  實際電路測試..............................................87  模擬結果與實際電路波形比較................................89 5.4 高頻切換主動式功因修正電路................................89  實際電路測試..............................................90 5.5 實驗結果與討論............................................93 第六章 結論與未來展望..............................................97 6.1 結論......................................................97 6.2 未來建議研究方向..........................................97 參考文獻...........................................................99 自述...............................................................103

    [1]R. Real, B. Molnar, and N. O. Sokai, “Class E resonant regulate
    dc/dc power converter: analysis of operation and experiment results at 1.5
    MHz,” IEEE Trans. Power Electronics, vol. 1, no. 2, pp. 111-120, Apr.,
    1986.

    [2]R. Real and A. S. Kislovski, “Telecom power supplies and power quality,”
    in Proc. IEEE International Telecommunications Energy Conference, INTELEC ’
    95, pp. 13-21, Nov. 1995.

    [3]G.Garcia, J. A. Cobos, R. Prieti, P. Alou, and J. Uceda, “Single phase
    power factor correction: a survey,” IEEE Trans. Power Electronics, vol.
    18, no. 3, pp. 749-755, May 2003.

    [4]“Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for
    harmonic current emissions (equipment input current ≤16A per phase)”, IEC
    1000-3-2 Document, 3rd Edition, 2005.

    [5]“IEEE 519 Recommended practices and requirements for harmonic control in
    electrical power systems,” IEEE Industry Applications Soc. /Power
    Engineering Soc., 1993.

    [6]“Electromagnetic compatibility (EMC) - Part 3-4: Limits – Limits of
    emission of harmonic current in low-voltage power supply systems for
    equipment with rated current greater than 16A,” IEC 1000-3-4 Document, 1st
    Edition, 1998.

    [7]L. H. Dixon, “High power factor pre-regulators for off-line power
    supplies,” in Unitrode Power Supply Design Sem., SEM-700, pp. I2.1-I2.6,
    1990.

    [8]K. H. Liu, R. Oruganti, and F. C. Lee, “Quasi-resonant converters
    topologies and characteristics,” IEEE Trans. Power Electronics, vol. 2,
    no. 1, pp. 62-71, Jan. 1987.

    [9]葉孝益,「切換式電源供應系統功因控制分析與研究」,國立清華大學碩士論文,
    2003。

    [10]E. Ismail and R. W. Erickson “A single transistor three phase resonant
    switch for high quality rectification,” in Proc. IEEE Power Electronics
    Specialists Conference, PESC’92, pp. 1341-1351, July 1992.

    [11]蔡政道,「交錯式降壓型轉換器研製」,國立中正大學碩士論文,2003。

    [12]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a
    hysteretic boost power factor correction circuit,” in Proc. IEEE Power
    Electronics Specialists Conference, PESC’90, pp. 800-807, June 1990.

    [13]R. Redl and B. P. Erisman, “Reducing distortion in peak current
    controlled boost power –factor correctors,” in Proc. IEEE Applied Power
    Electronics Conference and Exposition, APEC ’94, pp. 576-583, Feb. 1994.

    [14]K. M. Smedley and S. Cuk, “One-cycle control of switching converters,”
    IEEE Trans. Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.

    [15]L. Dixon, “Average current mode control of switching power supplies,” in
    the Unitrode Applications Handbook(IC 1051), Application note U-140, pp. 3-
    356-3-369, 1997.

    [16]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd
    edition, SCI-TECH Publishing Co., USA, 2001.

    [17]D. Maksimovic, J. Yungtaek, and R. W. Erickson, “Nonlinear carrier
    control for high-power-factor boost rectifiers,” IEEE Trans. Power
    Electronics, vol. 11, no. 4, pp. 578-584, July 1996.

    [18]I. Suga, M. Kimata, Y. Ohnishi, and R. Uchida, “New switching method for
    single-phase AC to DC converter,” in Proc. IEEE Power Conversion
    Conference, PCC’93, pp. 93-98, April 1993.

    [19]J. A. Pomilio and G. Spiazzi, “A double-line-frequency commutated
    rectifier complying with IEC 1000-3-2 standards,” in Proc. IEEE Applied
    Power Electronics Conference and Exposition, APEC’99, pp. 349-355, March
    1999.

    [20]L. Rossetto, G. Spiazzi, and P. Tenti, “Boost PFC with 100Hz switching
    frequency providing output voltage stabilization and compliance with EMC
    standards,” IEEE Trans. Ind. Applications, vol. 36, no. 1, pp. 188-193,
    Jan./Feb. 2000.

    [21]J. A. Pomilio, G. Spiazzi, and S. Buso, “Comparison among high-frequency
    and line-frequency commutated rectifiers complying with IEC 61000-3-2
    standards,” in Proc. IEEE Industry Applications Conference, IAC’00, pp.
    2218-2223, Oct. 2000.

    [22]http://www.taipower.com.tw/TaipowerWeb//upload/files/21/87_94year.pdf

    [23]V. Grigore, Topological issues in single-phase power factor correction,
    Ph. D. Dissertation, Helsinki University of Technology, Espoo, Finland,
    Nov. 2001.

    [24]F. C. Lee, “Power converter modeling and control,” Lecture notes for ECE
    5254 at Virginia Tech., spring 2003.

    [25]N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics:
    converters, applications, and design, John Wiley & Sons, Inc., NY, USA,
    1995.

    [26]A. W. Kelley, W. F. Yadusky, “Rectifier design for minimum line-current
    harmonics and maximum power factor,” IEEE Trans. Power Electronics, vol.
    7, no. 2, pp. 332-341, April 1992.

    [27]V. Vorperian and R. B. Ridley, “A simple scheme for unity power factor
    rectification for high frequency ac buses,” IEEE Trans. Power
    Electronics, vol. 5, no. 1, pp. 77-87, Jan. 1990.

    [28]K. K. Sum, “Improved valley-fill passive power factor correction current
    shaper approaches IEC specification limits,” PCIM Magazine, pp. 42-51,
    Feb. 1998.

    [29]R. Real, “An economical single-phase passive power-factor-corrected
    rectifier: topology, operation, extensions, and design for compliance,”
    in Proc. IEEE Applied Power Electronics Conference, APEC’98, pp. 454-460,
    Feb. 1998.

    [30]J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor
    correction in single-phase off-line power supply systems,” in Proc. IEEE
    Industrial Electronics, Control and Instrumentation, IECON’94, pp. 1688-
    1693, Sept. 1994.

    [31]M. Xie, Digital control for power factor correction, Master Thesis,
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
    June 2003.

    [32]梁適安譯,高頻交換式電源供應器原理與設計,全華圖書出版社,1995。

    [33]P. C. Todd, “UC3854 controlled power factor correction circuit design,”
    Application note, U-134, Unitrode Co., 1999.

    [34]V. Vorperian, “Simplified analysis of PWM converters using model of PWM
    switch Part I: continuous conduction mode,” IEEE Trans. Aerospace and
    Electronic Systems, vol. 26, no. 3, pp. 490-496, May 1990.

    [35]N. S. Nise, Control systems engineering, 3rd edition, John Wiley & Sons,
    Inc., USA, 2003.

    [36]G. Spiazzi, P. Mattavelli, and L. Rossetto, “Power factor preregulators
    with improved dynamic response,” IEEE Trans. Power Electronics, vol. 12,
    no. 2, pp. 343-349, Mar. 1997.

    [37]E. Figueres, J. M. Benavent, and M. Pascual, “Robust control of power-
    factor-correction rectifiers with fast dynamic response,” IEEE Trans.
    Industrial Electronics, vol. 52, no. 1, pp. 66-75, Feb. 2005.

    [38]R. Brown and M. Soldano, “PFC converter design with IR1150 one cycle
    control IC,” Application note, AN-1077, International Rectifier Co., 2005.

    [39]S. B. Dewan, “Optimum input and output filters for single-phase rectifier
    power supply,” IEEE Trans. Industry Applications, vol. IA-17, no. 3, pp.
    282-288, May/June 1981.

    [40]TCA785 datasheet, SIEMENS Semiconductor Corporation, 1990.

    下載圖示 校內:2009-08-25公開
    校外:2009-08-25公開
    QR CODE