簡易檢索 / 詳目顯示

研究生: 鄭敦文
Cheng, Tun-Wen
論文名稱: Al-7.6Si-0.4Mg合金微觀組織與機械性質之 摩擦攪拌效應探討
Effects of Friction Stirring on the Microstructure and Mechanical Properties of Al-7.6Si-0.4Mg Alloy
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 42
中文關鍵詞: 摩擦攪拌鋁合金
外文關鍵詞: Friction stirring, Aluminum
相關次數: 點閱:53下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用Al-Si-Mg系合金4008,分別經過不同熱處理後進行摩擦攪拌製程。熱處理條件分別為完全退火(O材)以及固溶化處理後進行人工時效至峰值(T6材)。之後針對攪拌區(SZ)的顯微結構進行解析,並探討摩擦攪拌製程對於機械性質的影響。而本實驗同時進行接合的研究,結果發現接合後原先界面處不再存在,且材料受力後弱化之起點發生於接合處以外。

      根據實驗結果顯示,不同前熱處理試片(O材及T6材)在摩擦攪拌過後,SZ的微觀組織並無顯著差異。矽晶均更為破碎,並有部份圓鈍化的現象,且較攪拌前均勻散布於α-Al基地。攪拌前矽晶之長軸及短軸分別約26μm及5μm,在攪拌過後則分別減少至11μm以及4μm。觀察α-Al基地時發現有動態再結晶的現象,其晶粒呈等軸貌,晶粒徑經攪拌後由約36μm細化至約11μm。從T6材之X-ray繞射圖形發現,攪拌後SZ的TD面會產生傾向於(220)之從優取向。此外本研究並觀察摩擦攪拌對自然時效的影響,發現不同熱處理的試片經摩擦攪拌過後,有著相似的自然時效曲線,均在四天後曲線趨於平緩。

      綜合以上所述,可推測摩擦攪拌製程能相當程度地消除前熱處理對微觀組織的影響。

      T6材之SZ在攪拌過後發現降伏強度從306MPa下降至166Mpa。雖然攪拌使SZ的晶粒較細化,但其拉伸變形阻抗卻下降,研判為攪拌過程中的高溫與高應變狀態使得析出強化相Mg2Si重溶,而降低強化之效果,導致材料軟化。

      本研究在高溫的拉伸測試中,發現O材(OB)及其經過攪拌的材料(OF)其高溫變形阻抗在300℃附近發生陡降的現象,並且在300℃以前,OF之UE均小於OB。而在400℃及500℃時,OF具有相當高之延性。

     The Al-Si-Mg 4008 alloy which had been experienced O and T6 heat treatment respectively was selected for FSP in the present study. Subsequently, examined the microstructure in the stir zone and correlated mechanical properties changing with FSP effect. There was no obviously interface could be seen and with better properties in the joint by FSW.

     Observation displayed that the microstructure in the SZ were similar irrespective of heat treatments. The Si particles were broken into finer ones and dispensed homogeneously partial in α-Al matrix. The longitudinal size and transverse size of Si particles were 26μm and 5μm before being stirred and were decreased to 11μm and 4μm after being stirred. The α-Al matrix was composed of equiaxed grains arose from dynamically recrystallization and grain size decrease indeed to some extent, i.e. from original 36μm to final 11μm. The XRD demonstrated that the transverse plane was preponderantly coincident with crystallographic (220) plane. By the way, we observed that both samples with different heat treatments exhibited similar behavior of natural aging which went steady in four days after FSP. As all mentioned above, it is reasonable to deduce that FSP could eliminate the microstructure resulted from different pre-heat treatment apparently.

     The yield strength in the SZ of T6 sample deteriorated drastically from 306MPa to 166MPa despite of fine microstructure. The softened phenomenon may be ascribed to remelted of strengthening Mg2Si precipitates.

     When tensile test was carried out in high temperature surrounding, the tensile strength of OF metal declined severely at 300℃. The uniform elongations of OF are lower than that of OB before 300℃. On the other hand, OF presented high ductility at 400℃ as well as 500 ℃respectively.

    摘要………………………………………………………………… Ⅰ Abstract…………………………………………………………… Ⅱ 誌謝………………………………………………………………… Ⅳ 總目錄……………………………………………………………… Ⅵ 表目錄……………………………………………………………… Ⅷ 圖目錄……………………………………………………………… Ⅸ 第一章 前言……………………………………………………… 1 第二章 文獻回顧………………………………………………… 2 2-1 Al-Si-Mg系合金介紹……………………………………… 2 2-2 摩擦攪拌製程(Friction Stir Processing, FSP)及其效 應…………………………………………………………… 3 2-3 略述FSP的高延性現象相關研究………………………… 4 第三章 實驗步驟與方法………………………………………… 7 3-1 材料製備及摩擦攪拌製程………………………………… 7 3-2 顯微組織觀察及硬度量測………………………………… 7 3-2-1 光學顯微結構……………………………………………7 3-2-2 X-Ray相鑑定…………………………………………… 8 3-2-3 維氏硬度量測……………………………………………8 3-3 拉伸試驗…………………………………………………… 9 3-3-1 常溫拉伸試驗……………………………………………9 3-3-2 高溫拉伸試驗……………………………………………9 第四章 實驗結果………………………………………………… 16 4-1 攪拌前後微觀組織觀察…………………………………… 16 4-1-1 光學顯微結構……………………………………………16 4-1-2 X-ray 繞射分析…………………………………………16 4-1-3 摩擦攪拌後之自然時效效應……………………………17 4-2 接合對材料性質之影響…………………………………… 17 4-3 T6材機械性質之攪拌效應探討…………………………… 17 4-4 FSP之高溫拉伸特性……………………………………… 18 第五章 討論……………………………………………………… 31 5-1 接合對材料性質的影響…………………………………… 31 5-2 FSP對不同前熱處理材微觀組織的影響………………… 31 5-2-1 FSP對OM觀察之影響…………………………………… 31 5-2-2 FSP對T6材織構之影響………………………………… 32 5-3 FSP對T6材拉伸性質的影響……………………………… 32 5-3-1 常溫拉伸特性…………………………………………… 32 5-3-2 W狀硬度分佈曲線…………………………………………33 5-4 FSP對4008鋁合金高溫性質的影響…………………………33 第六章 結論……………………………………………………… 37 參考文獻…………………………………………………………… 39

    1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith and C. J. Dawes, “Friction Stir Butt Welding”, International Patent Application No PCT/GB92/02203, (1991).
    2. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling and W. H. Bingel, “Properties of Friction-stir-welded 7075 T651 Aluminum”, Metall. Mater. Trans. A ., Vol. 29A, (1998) , pp. 1955-1964.
    3. C. I. Chang, C. J. Lee and C. J. Huang, “Relationship between Grain Size and Zener-Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys”, Scripta Mater., Vol. 51, (2004), pp. 509-514.
    4. X. K. Zhu and Y. J. Chao, “Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel”, Mater. Lett., Vol. 146, (2004), pp. 263-272.
    5. Won-Bae Lee and Seung-Boo Jung, “The Joint Properties of Copper by Friction Stir Welding”, Mater. Lett., Vol. 58, (2004), pp. 1041-1046.
    6. R. John, , K. V. Jata and K. Sadananda, “Residual Stress Effects on Near-Threshold Fatigue Crack Growth in Friction Stir Welds in Aerospace Alloys” , Int. J. Fatigue., (2003), pp. 939-948.
    7. Y. J. Kwon, I. Shigematsu and N.Saito, “Mechanical Property Improvements in Aluminum Alloy through Grain Refinement using Friction Stir Process”, Mater. Trans., Vol. 45, No. 7, (2004) , pp. 2304-2311.
    8. Z. Y. Ma, R. S. Mishra, M. W. Mahoney and R. Grimes, “High Strain Rate Superplasticity in Friction Stir Processed Al–Mg–Zr Alloy” , Mater. Sci. Eng. A Vol. 351, ( 2003), pp. 148 – 153.
    9. Metals Handbook, American Society for Metals, Metals park, Ohio, 10th ed. , Vol.2, (1990), pp. 52.
    10. M. H. Jacobs, “Structure of Metastables Precipitates Formed during Aging of an Al-Mg-Si Alloy”, Phil. Mag., Vol. 26, (1972), pp. 1-13.
    11. S. Shivkumar, C. Keller and D. Apelian, “Aging Behavior in Cast Al-Si-Mg Alloys”, AFS Trans., Vol. 98, (1990), pp. 905-911.
    12. N. Saito and I. Shigematsu, “Grain Refinement of 1050 Aluminum Alloy by Friction Stir Processing”, J. Mater. Sci. Lett., Vol. 20, No. 20 , (2001), pp. 1913-1915.
    13. Uday Chakkingal, Arief B. and P. F. Thomson, “Microstructure Development during Equal Channel Angular Drawing of Al at Room Temperature”, Scripta Mater., Vol.39, No.6, (1998), pp. 677-684.
    14. Y. S Sato, Y. Kurihara, S.H.C. Park, H. Kokawa and N. Tsuji, “Friction Stir Welding of Ultrafine Grained Al Alloy 1100 Produced by Accumulative Roll-bonding”, Scripta Mater., Vol. 50, (2004), pp. 57-60.
    15. Y. lwahashi, Z. Horita, M. Nemoto and T. G. Langdon, “Investigation of Microstructural Evolution Equal-Channel Angular Pressing”, Acta Mater., Vol. 45, No.11, (1997), pp. 4733-4741.
    16. Y. S. Sato, M. Urata, H. Kokawa and K. Ikeda, “Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys”, Mater. Sci. Eng. A, Vol. 354, No.1-2, (2003), pp. 298-305.
    17. Y. S. Sato, H. Kokawa, M.Enomoto and S. Jogan, “Microstructure Evolution of 6063 Aluminum during Friction-Stir Welding”, Metall. Mater. Trans. A., Vol. 30A, No.9, (1999), pp. 2429-2437.
    18. P. M. Bronsveld, M. J. Starink, M. Verwerft, J. Th. M. de Hosson and P. Van Mourik, “Observation of Precipitation in a Particle Reinforced Al-Cu-Mg Alloy with 20% Silicon”, Scripta Mater., Vol.33, No.3, (1995), pp. 427-432.
    19. Y. S. Sato, H. Kokawa, M. Enomoto, S. Jogan and T. Hashimoto, “Precipitation Sequence in Friction Stir Weld of 6063 Aluminum during Aging”, Metall. Mater. Trans. A., Vol. 30A, No.12, (1999), pp.3125-3130.
    20. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C. Bamption, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum”, Scripta Mater., Vol.36, No.1, (1997), pp. 69-75.
    21. W. B. Lee, Y. M. Yeon and S. B. Jung, “The Improvement of Mechanical Properties of Friction-Stir Welded A356 Al Alloy”, Mater. Sci. Eng. A, Vol. 355, No. 1-2, (2003), pp. 154-159.
    22. K. V. Jata and S. L. Semiatin, “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum”, Scripta Mater., Vol. 43, No.8, (2000), pp. 743-749.
    23. F. J. Humphreys and M. Hatherly, “RECRYSTALLIZATION and Related Annealing Phenomena”, Oxford, UK, Tarrytown, N.Y., U.S.A., (1996) .
    24. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, “Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy”, Acta Mater., Vol. 50, (2002), pp. 4419-4430.
    25. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, “Superplasticity in Cast A356 Induced via Friction Stir Processing”, Scripta Mater., Vol. 50, (2004) , pp. 931-935.
    26. Thaddeus B. Massalski, Binary Alloy Phase Diagrams, Vol.1.1, American Society for Metals, Metals Park, Ohio, (1984), pp.165.
    27. R. W. Fonda, J F. Bingert and K, J, Colligan, “Development of Grain Structure during Friction Stir Welding”, Scripta Mater., Vol.51, (2004), pp.243-248.
    28. 陳錦修, “兩相共晶鋁合金213K至673K之拉伸特性研究”, 國立成功大學材料科學與工程研究所博士論文, 民國85年, 119頁。
    29. Y. S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan and T. Hashimoto, “Microtexture in the Friction-Stir Weld of an Aluminum Alloy”, Metall. Mater. Trans. A., Vol. 30A, No.12, (2001), pp.941-948.
    30. 張志溢, “摩擦旋轉攪拌製程對AZ31鎂合金晶粒細化之研究”, 國立中山大學材料科學研究所碩士論文, 民國93年, 49-50頁。
    31. 黃中佐, “鋁合金高溫變形阻抗陡降臨界溫度之銅、矽及鎳效應探討”, 國立成功大學材料科學與工程研究所碩士論文, 民國92年, 第6頁。

    下載圖示 校內:2006-08-06公開
    校外:2006-08-06公開
    QR CODE