簡易檢索 / 詳目顯示

研究生: 魏萍萱
Wei, Pin-hsuan
論文名稱: 應用資訊理論在沿海工業區之高頻環境監測數據之分析與管理
Application of information theory for the analysis and management of high-frequency environmental monitoring data from a coastal industrial park
指導教授: 劉大綱
Liu, Ta-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 海洋科技與事務研究所
Institute of Ocean Technology and Marine Affairs
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 費雪值香穠熵值即時自動水質監測資訊理論
外文關鍵詞: Information theory, Real-time water monitoring, High-frequency environmental data, Fisher information, Shannon entropy
相關次數: 點閱:88下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 河口區域是充滿生產力的生態系統,含有著豐富的有機質、營養鹽和多樣性的生物。河口區域也是陸源性污染物進入沿海海域的重要管道,河口水質常受到潮汐週期的影響,退潮時陸地上的污染物藉由河川水路排入海洋。這些重要又敏感的河口,其水質變化之情形需要長期且即時的監測以瞭解其受陸源性污染物之影響。緊臨著河口的雲林離島工業區,從2006年起建立了自動水質監測系統,該系統提供高頻率且即時的沿岸海域水質資料。然而,目前所面臨的一個重要課題是如何從這些大量的水質數據中,擷取出有用的資訊以做為海域水質管理之參考依據。
    本研究使用雲林離島工業區兩處自動監測站之水質監測數據,如深度、鹽度、葉綠素、溫度、濁度、溶氧和比導電度等,透過資訊理論將水質自動監測數據轉換成香穠熵值和費雪信息值。由此兩指數與原始數據之比較,來瞭解其用於解釋沿海工業區海域水質監測資料之效益,並透過相關性分析來瞭解其與原始數據間之相關性,進一步探討在水質管理上之意涵。
    研究結果顯示資訊理論應用在海域即時監測上具可行性,可用以處理並簡化大量的自動水質監測數據,且藉由這樣的方式開啟了沿海海域水質監測的新觀點。原始數據經本方式處理後可以有效地濾除游離值,並可凸顯出原始監測資料連續變動中,較不易看出之資訊內涵。此外比起原始數據香穠熵值是不錯的監測指標,特別是對濁度、葉綠素和鹽度等項目,透過相關性分析結果亦顯示它們的香穠熵值和原始數據有顯著的相關性。本研究並針對此三項水質參數之香穠熵值提出警戒值,當超出時可能代表水質發生異常狀況,管理單位可即時到監測海域,增加檢測其他無法由自動水質監測得到之重要水質參數如重金屬、有機物等,以即時釐清造成水質異常之原因。

    Estuarine area is an important interface for transporting land-based contaminants into the coastal ocean. Its water quality can be significantly affected by the tidal cycles due to the discharge of land-based pollutants from waterways to coastal area during ebb tides. In order to understand the influence of land-based source pollutants, it is important to conduct long-term real-time monitoring for these sensitive estuaries. A semi-continuous automatic water quality monitoring system has been installed in Yunlin Offshore Industrial Park, the largest industrial park in Taiwan, since 2006 to provide real-time water quality information. However, how to extract useful information out of a large quantity of raw data becomes a challenge for coastal water quality management.
    In this study, information theory was applied for processing the data of several water quality parameters: water depth, salt, chlorophyll, temperature, turbidity, dissolved oxygen, and conductivity. Shannon entropy and Fisher information were determined to explore their applicability for signaling possible coastal pollution events in the YOIP. Correlation coefficient between Shannon entropy and raw monitoring data was also calculated to explore the implication of this information theory index.
    Results showed that it is feasible to employ information theory for processing large volumes of water monitoring data. The method also helps to filter the outliers and reveal the information contents. In additions, Shannon entropy is a better indication than the raw monitoring data, especially for turbidity, chlorophyll and salinity. The result of the correlation analysis showed that the relationship between with Shannon entropy and these three parameters were significant. Warning criteria of Shannon entropy for these parameters was proposed in the study. The management authority may need to conduct emergency sampling for those important parameters that cannot be monitored automatically, such as heavy metals and organics, when Shannon entropy exceeds the warning criteria since it may indicate a possible pollution event. We conclude that these information contents may be a useful new tool for exploratory data analysis to signify some episodes of water quality degradation.

    目 錄 ..................................................................................................... Ⅳ 表目錄 ..................................................................................................... Ⅵ 圖目錄 ..................................................................................................... Ⅶ 第一章 緒論 ........................................................................................... 1 1.1 研究動機與背景 ............................................................... 1 1.2 研究目的 ........................................................................... 2 1.3 研究範圍與限制 ............................................................... 2 1.4 研究流程 ........................................................................... 2 第二章 文獻回顧 ................................................................................... 4 2.1 資訊理論 ........................................................................... 4 2.1.1 理論基礎 ............................................................... 4 2.1.2 理論應用 ............................................................... 6 2.2 環境監測上的方式 ......................................................... 15 2.2.1 自動水質監測的歷史 ......................................... 15 2.2.2 海域自動水質監測 ............................................. 16 2.2.3 陸域河川水質自動監測 ..................................... 20 2.2.4 綜合評析 ............................................................. 33 2.3 雲林離島工業區的自動水質監測 ................................. 35 第三章 研究方法 ................................................................................. 42 3.1 資料處理與分析架構 ..................................................... 42 3.2 分析方法 ......................................................................... 43 3.3 數據在海域水質管理上的應用 ..................................... 47 第四章 結果與討論 ............................................................................. 51 4.1 .YLWQ1 測站監測結果與分析 ...................................... 51 4.2 .YLWQ2 測站監測結果與分析 ...................................... 63 4.3 相關性分析 ..................................................................... 72 4.4 研究結果在近岸海域水質管理 ..................................... 76 4.4.1 研究成果對於水質的關連性和意涵 ................. 76 4.4.2 水質出現異常狀況後續的因應措施 ................. 79 4.4.3 水質異常應變之建議流程 ................................. 82 第五章 結論與建議 ............................................................................. 84 5.1 結論 ................................................................................. 84 5.2 建議 ................................................................................. 86 參考文獻 ................................................................................................. 88 一、中文部份 ........................................................................ 88 二、英文部份 ........................................................................ 89 三、網站資料 ........................................................................ 91

    一、中文部份
    1. 江介倫、鄭克聲 (2000)「信息熵在雨量站網設計之研究」,台灣大學出版,台北
    2. 陳宜生、劉書聲 (1993)「談談熵」,湖南出版社,長沙
    3. 馮端、馮步雲 (1998)「熵」,建宏出版社,新竹
    4. 劉廣英 (1984)「等熵分析」,氣象預報與分析,第99期,1-10頁
    5. 鄭克聲、許敏楓、葉惠中 (1996)「雨量站網設計與評估-區域化變數理論之應用」,台灣水利,第44期,第1卷,16-25頁
    6. 黃煌煇、高瑞棋、余進利、陳平、高天韻 (2004)「彰化濱海工業區整體開發規劃調查研究--九十三年度(第十四年)--(九十三年一月~九十三年十二月)--第一部份--現場調查監測及分析--第二冊:肆、海陸域水質調查」,成功大學水工試驗所研究試驗報告第331號,台南
    7. 黃煌煇、高瑞棋、余進利、陳平、高天韻 (2005)「九十四年度專案計畫執行成果報告-雲林離島式工業區開發計劃整體開發規劃調查分析專案計畫九十一年度至九十四年度工作-第一部分(自然環境現場調查)第四冊(河口及調查水質調查)」,成功大學水工試驗所研究試驗報告第339號,台南
    8. 黃煌煇、高瑞棋、許榮庭、楊瑞源、陳平 (2007)「雲林離島式基礎工業區整體環境資源管理評估-96年度(第16年)-(96年1月~96年12月)-第二部份(工業區整體環境資源管理分析評估)第三冊(海域水質即時監控系統建立)」,成功大學水工試驗所研究試驗報告第375號,台南
    9. 黃煌煇、高瑞棋、許榮庭、楊瑞源、陳平 (2008)「雲林離島式基礎工業區整體環境資源管理評估-97年度(第17年)-(97年1月~97年12月)-第二部份(工業區整體環境資源管理分析評估)第三冊(海域水質即時監控系統建立)」,成功大學水工試驗所研究試驗報告第422號,台南
    10. 環保署 (2003)「河川水質自動監測評析九十二年度期末報告」,台北
    11. 環保署 (2008)「環境水質自動連續採樣監測先期規劃期末報告」,台北
    二、英文部份
    1. Amorocho J, Espildora B (1972). “Entropy in the Assessment of Uncertainty in Hydrologic Systems and Models”, Water Resources Research, Vol. 9, pp. 1511-1522
    2. Chapman TG (1986). “Entropy as A Measure of Hydrologic Data Uncertainty and Model Performance”, Journal of Hydrology, Vol. 85, pp. 111-126
    3. Cheng WL, Kuo YC, Lin PL, Chang KH, Chen YS, Lin TM, Huang R (2004). “Revised Air Quality Index Derived from an Entropy Function”, Atmospheric Environment, Vol. 38, pp. 383-391
    4. Dodds WK, (2002). “Freshwater Ecology”, Academic Press, San Diego, CA, USA
    5. Fath BD, Cabezas H, Pawlowski CW (2003). “Regime Change in Ecological Systems: an Information Theory Approach”, Journal of Theoretical Biology, Vol. 222, pp. 517-530
    6. Fath BD, Cabezas H (2004). “Exergy and Fisher Information as Ecological Indices”, Ecological Modeling, Vol. 174, pp. 25-35
    7. Fisher RA (1925). “Theory of Statistical Estimation”, Proceedings of the Cambridge philosophical Society, Vol. 22, pp. 700
    8. Frieden BR, Soffer BH (1995). “Lagrangians of Physics and the Game of Fisher-Information transfer”, Physical Review E, Vol. 52, pp. 2274-2286
    9. Fleming SW (2007). “An Information Theoretic Perspective on Mesoscale Seasonal Variations in Ground-level Ozone”, Atmospheric Environment, Vol. 41, pp. 5746-5755
    10. Global Environment Centre Foundation (GEC) (1997). “Water Pollution Continuous Monitoring Technology in Japan”, Osaka, Japan
    11. Harmancioglu N, Yevjevich V (1987). “Transfer of Hydrologic Information Among River Points.” Journal of Hydrology, Vol. 91, pp. 103-118
    12. Jeong Y, Sanders BF, Grant SB (2006). “The Information Content of High-Frequency Environmental Monitoring Data Signals Pollution Events in the Coastal Ocean”, Environmental Science & Technology, Vol. 40, No. 20, pp. 6215-6220
    13. Krasovskaia I (1995). “Quantification of the Stability of River Flow Regimes”, Hydrological Sciences Journal, Vol. 40, pp. 587-598
    14. Martin MT, Pennini F, Plastino A (1999). “Fisher’s Information and the Analysis of Complex Signals”, Physics Letters A, Vol. 256, pp. 173-180
    15. Shannon CE, Weaver W (1949). “The Mathematical Theory of Communication”, University of Illinois Press, Urbana Reprinted in 1963 and 1998
    16. US Geological Survey (USGS) (2000). “Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting”, Reston, Virginia, USA
    三、網站資料
    1. NEOCO (2009), http://www.es.ucsc.edu/~neoco/ (造訪時間:2009/06/30)
    2. USGS (2009a), http://pubs.usgs.gov/fs/2004/3069/ (造訪時間:2009/06/30)
    3. USGS (2009b), http://fl.water.usgs.gov/ (造訪時間:2009/06/30)。
    4. USGS (2009c),
    http://ks.water.usgs.gov/pubs/fact-sheets/fs.138.97.putnam.html (造訪時間:2009/06/30)
    5. SCMI (2009), http://scmi.us/category/ocean-studies-institute/ci-core (造訪時間:2009/06/30)
    6. HIOOS (2009),
    http://www.soest.hawaii.edu/ hioos/data_product/index.php (造訪時間:2009/06/30)

    下載圖示 校內:2010-09-11公開
    校外:2012-09-11公開
    QR CODE