簡易檢索 / 詳目顯示

研究生: 張文豪
Chang, Wen-Hao
論文名稱: 立體電極應用於可攜式單細胞自動捕捉與量測系統
Portable System of Single Cell Automatic Capture and Measurement based on 3D Microelectrodes
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 26
中文關鍵詞: 可攜式阻抗分析儀立體電極自動化單細胞捕捉自動化單細胞量測
外文關鍵詞: Portable Impedance Analyzer, 3D Microelectrodes, Automated Single Cell Capture, Automated Single Cell Measurements
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前越來越多的研究投入生物晶片上,大部分的生物分析注重在生物切片與活體組織。但從生物切片和活體組織無法了解詳細的生物訊息,只能朝向單一的細胞層級才能更深入了解。現今細胞檢驗所測出的細胞資訊都是細胞的平均值,不能真正的去代表單一細胞的檢驗結果。然而量測到細胞的平均值的情況,可能會忽略各個細胞的差異性。所以為了解決這個問題,對單一細胞的研究分析就更為重要。針對單一細胞的研究可以進而確認個別細胞真正的生理和物理機制。
    在近幾年細胞電阻抗分析技術發展相當快速,它提供了一個快速和非侵入式的方法檢測細胞。可以藉由量測細胞阻抗來分析細胞的電特性,並且利用建模的方式來了解細胞的各項生理和物理的特性。
    單一細胞的捕捉方法有非常多,常見的像是光學捕捉、機械式捕捉、電性式捕捉。光學捕捉主要是利用光壓控制微米大小的物體使其移動到指定位置。然而在操作的過程很容易因為能使用能量過大造成物體熱量太高造成物體組織被破壞。再來機械式捕捉式利用微米等級的物理結構來攔截細胞於特定區域內,捕捉方式較為簡單。但捕捉的物理結構必須接觸細胞,往往會因為推動細胞的力量太大而破壞道結構。然而,電性式捕捉式利用微電極產生的電場造成電熱來移動細胞,在捕捉的過程中不需要接觸到細胞特點,但捕捉後細胞後容易受到些微晃動或其他干擾造成細胞移動到指定區域外。
    目前細胞捕捉與量測大多需要外接其他市售的大型儀器才能進行量測及分析,因此單細胞捕捉與阻抗分析很容易受到儀器和地點的限制。所以本研究提出一個可攜式的自動捕捉與量測單細胞阻抗系統,包含細胞捕捉與量測生物晶片、量測電路、捕捉電路。將生物晶片結合阻抗量測應用於單細胞分析上,在結合機械式與電性式的優點應用於單細胞捕捉。利用生物晶片上的方位電極產生電熱來移動細胞到捕捉電極,藉由量測到阻抗值判定細胞捕捉完成與否來決定電熱開關。並且量測頻率範圍為11k -101k Hz,藉此分析單一細胞從低頻到高頻的特性。

    At present, more and more research is devoted to biochips, and most bioassays are focused on biopsy. But biopsy and biological tissue can not understand the detailed biological information, only a single cell level for more in-depth understanding. The current cell test measured cell information is the average cell and can not really represent the results of single cell detection. However, the measurement of the mean of the cells can ignore the difference in each cell. So in order to solve this problem, single cell analysis is more important. Single cell studies can confirm the true physiological and physical mechanisms of individual cells. In recent years, the cell impedance analysis has developed rapidly and provides a rapid and noninvasive method for detecting cells. The electrical properties of the cells can be analyzed by measuring cell impedance, and the physiological and physical properties of the cells can be understood by modeling.

    Single cell capture methods are common in many ways like optical capture, mechanical capture, and electrical capture. Optical capture is mainly the use of light pressure control micron size of the object to move to a specified location. However, the process of operation is easy because the use of energy is too large to cause the body is too high to cause damage to the organization of the object. And then specific area, the capture method is relatively simple. But the physical structure of the capture must be in contact with the cells, often due to the promotion of cell power is too large and destroy the structure. However, the electric trapping utilizes the electric field generated by the microelectrodes to cause electric heating to move the cells, which do not need to be exposed to cell characteristics during the capture process, but are susceptible to slight shaking or other interference after the cells are captured to cause cells to move outside the specified area

    Most of the cell capture and measurement requires the addition of other commercially available large instruments for measurement and analysis. It causes single cell capture and impedance analysis to be easily limited by instruments and locations. Therefore, this study presents a portable single-cell impedance system for automatic capture and measurement. It contains cell capture and measurement of biological chips, measuring circuits, and capture circuits. The biochip combined impedance measurement was applied to single cell analysis. Also, the combination of mechanical and electrical advantages is applied to single cell capture. It uses the azimuth electrodes on the biochip to generate electric heat to move the cells to the capture electrode. The cell capture is determined by measuring the impedance value to determine the electrical switch. And the measurement frequency range is set at 11k -101k Hz. The single cell was analyzed from low frequency to high frequency by this experiment.

    CONTENT 摘要 I ABSTRACT III ACKNOWLEDGEMENT VI CONTENT VIII LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 1.1 Back ground and motivation 1 1.2 Cell Lines 2 CHAPTER 2 Material and Methods 3 2.1 Electrodes Design 3 2.2 3D Electrodes Fabrication 3 2.3 Composition of Electroforming 7 2.4 Microfluidic Channel Fabrication 9 2.5 Scale of Electrode 10 2.6 Hardware Fabrication 12 2.7 Software Design 15 CHAPTER 3 EXPERIMENTAL SETUP AND MATERIAL 17 3.1 Experiment Step 17 3.2 Materials 19 CHAPTER 4 RESULTS AND DISCUSSIONS 20 4.1 Cell Move and Capture Electrodes 20 4.2 Impedance Variation 21 4.3 Impedance of DMEM and Reusable Issue 22 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 24 REFERENCE 26

    [1] Linderholm, P., J. Vannod, Y. Barrandon, and P.
    Renaud, Bipolar resistivity profiling of 3D tissue
    culture. Biosens Bioelectron, 22(6): p. 789-96,
    2007.
    [2] Arias, L.R., C.A. Perry, and L. Yang, Real-time
    electrical impedance detection of cellular
    activities of oral cancer cells. Biosens
    Bioelectron, 25(10): p. 2225-31, 2010.
    [3] Han, A. and A.B. Frazier, Ion channel
    characterization using single cell impedance
    spectroscopy. Lab Chip, 6(11): p. 1412-4, 2006.
    [4] Hong, J., K. Kandasamy, M. Marimuthu, C.S. Choi, and
    S. Kim, Electrical cell-substrate impedance sensing
    as a non-invasive tool for cancer cell study.
    Analyst, 136(2): p. 237-45, 2011.
    [5] Reitinger, S., J. Wissenwasser, W. Kapferer, R.
    Heer, and G. Lepperdinger, Electric impedance
    sensing in cell-substrates for rapid and selective
    multipotential differentiation capacity monitoring
    of human mesenchymal stem cells. Biosens
    Bioelectron, 34(1): p. 63-9, 2012.
    [6] Radke, S.M. and E.C. Alocilja, Design and
    fabrication of a microimpedance biosensor for
    bacterial detection. IEEE SENSORS JOURNAL, 4(4): p.
    434-440, 2004.
    [7] Ghosh Dastider, S., S. Barizuddin, M. Dweik, and
    M.F. Almasri, Impedance biosensor based on
    interdigitated electrode array for detection of E.
    coli O157:H7 in food products, 8369: p. 83690Q-
    83690Q-7, 2012.
    [8] Yang, L., Y. Li, C.L. Griffis, and M.G. Johnson,
    Interdigitated microelectrode (IME) impedance sensor
    for the detection of viable Salmonella typhimurium.
    Biosens Bioelectron, 19(10): p. 1139-47, 2004.
    [9] Wang, L., L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo,
    and J. Cheng, Real-time, label-free monitoring of
    the cell cycle with a cellular impedance sensing
    chip. Biosens Bioelectron, 25(5): p. 990-5, 2010.
    [10] Thakur, M., K. Mergel, A. Weng, S. Frech, R.
    Gilabert-Oriol, D. Bachran, M.F. Melzig, and H.
    Fuchs, Real time monitoring of the cell viability
    during treatment with tumor-targeted toxins and
    saponins using impedance measurement. Biosens
    Bioelectron, 35(1): p. 503-6, 2012.
    [11] Ke, Y.L., F.Y. Chang, M.K. Chen, S.L. Li, and L.S.
    Jang, Influence of electromagnetic signal of
    antibiotics excited by low-frequency pulsed
    electromagnetic fields on growth of Escherichia
    coli. Cell Biochem Biophys, 67(3): p. 1229-37, 2013.

    下載圖示 校內:2022-07-03公開
    校外:2022-07-03公開
    QR CODE