| 研究生: |
李孟霖 Lee, Meng–Lin |
|---|---|
| 論文名稱: |
燒結促進劑對(Mg0.95Co0.05)TiO3-SrTiO3微波介電陶瓷特性之探討與其應用 Investigation and applications for sintering aids, doped in the microwave dielectric ceramics - (Mg0.95Co0.05)TiO3-SrTiO3 |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 燒結促進劑 、微波介電陶瓷 |
| 外文關鍵詞: | ceramic, 96MSCT |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討燒結促進劑對0.96(Mg0.95Co0.05)TiO3-0.04SrTiO3, 96MCST微波介電陶瓷的影響。使用液相燒結的方式添加燒結促進劑ZnO、B2O3及V2O5促使材料的緻密化,降低96MCST的燒結溫度。由實驗結果,添加 %的ZnO於96MCST材料裡,可在1275oC時燒結,介電係數εr為20.8,品質因素(Q×f )為74000,共振頻率溫度係數τf為+2.3ppm/oC。與原來未添加燒結促進劑的材料比較(燒結溫度1400 oC)明顯降低燒結溫度。另外,以96MCST+ %ZnO此材料為基礎製作基板,設計一交錯耦合雙頻f1=2.4, f2= 5.2GHz的橢圓濾波器,經模擬在f1與f2下,其 S21分別為-3dB與-3.8dB,頻寬分別為4%與5%。最後再設計此雙頻濾波器在FR4與AlO3的基板上來比較與驗證此材料96MCST+ %ZnO具有良好的溫度穩定性、高介電係數εr及高品質因素(Q×f )。
The effect of sintering aids, doped in the microwave dielectric ceramic with the ingredient of 0.96(Mg0.95Co0.05)TiO3-0.04SrTiO3, abbreviated 96MCST has been investigated in this thesis. By utilizing the effect of liquid phase, the sintering aids were mixed in 96MCST in order to promote to solid and to reduce the sintering temperature. As the outcome reveals, the specimen, 96MCST with 1wt% ZnO can sinter at 1275oC,and own the characteristic of dielectric constant εr 20.8, quality factor Q×f 72000, and temperature coefficient of resonant frequency τf +2.3ppm/oC. Conspicuously, compared to the pure material, sintering at 1400oC, the sinter temperature was reduced. Otherwise, the quasi-elliptic function filters, possessing a dual-passband response of the fundamental frequency f1 at 2.4GHz and the first higher-order resonant frequencies f2 at 5.2GHz, were meticulously implemented on the structure composed of 96MSCT and 1 wt% ZnO. After a series of sophisticated simulation and tangible realization, the responses at f1=2.4GHz and f2=5.2GHz respectively dominate S21 -3dB and -3.8dB, and bandwidth 4% and 5%. Ultimately, the dual-band filter was again circumspectly designed on the FR4 and AlO3 structure to substantially verify 96MCST+1wt% ZnO material occupying outstanding performances with stable temperature coefficient of resonant frequency, high dielectric constant, and excellent quality factor.
[1] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., vol. 33, pp. 5466-5470, 1994
[2] C. L. Huang, C. L. Pan and J. F. Hsu, “Dielectric Properties of (1-X)(Mg0.95Co0.05)TiO3-XCaTiO3 Ceramic System at Microwave Frequency,” Materials Research Bulletin, vol. 78, pp. 111-115, 2002
[3] Kuo, J.-T. and Hung-Sen Cheng “Design of quasi-elliptic function filters with a dual-passband response,” Microwave and Wireless Components Letters, IEEE Volume 14, Issue 10, Oct. 2004 Page(s):472 - 474
[4] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[5] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[6] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,
1989.
[7] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
[8] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
[9] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[10] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[11] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[12] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[13] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[14] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[15] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[16] E. O. Hammerstard, in Proceedings of the european microwave conference., pp. 268-272, 1975.
[17] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
[18] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[19] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[20] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[21] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[22] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[23] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop r-esonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[24] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[25] J. S. Hong, and M. J. Lancaster, “Microstrip square open-loop r-esonators for cross-coupled planar microwave filters Filter for RF/Microwave Application,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, New York: Wiley, 2001.
[26] M. Makimoto S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap2, Springer, 2000.
[27] M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, chap4, Springer, 2000.
[28] M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Transactions onMicrowave Theory and Techniques, Vol. MTT-28, No.12 , pp.1413-1417, December 1980.
[29] M. Sagawa, K. Takahashi, and Mitsuo Makimoto,“Hairpin Resonator Filters and Their Application to Receiver Front-End MIC,S,” IEEE Transactions onMicrowave Theory and Techniques, Vol. 37, No.12 , pp.1991-1997, December 1989.
[30] F. Giannini, M. Salerno and R. Sorrentino, “Design of Low-Pass Elliptic Filters by Means of Cascaded Microstrip Rectangular Elements,” IEEE Transactions onMicrowave Theory and Techniques, Vol. MTT-30No.9,pp1348-1353, September 1982.
[31] Monzon, C “A small dual-frequency transformer in two sections,” Microwave Theory and Techniques, IEEE Transactions on Volume 51, Issue 4, April 2003 Page(s):1157 – 1161
[32] G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures. Norwood, MA: Artech House, 1980.
[33] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985.
[34] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[35] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980.
[36] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
[37] J. S. Hong and M. J. Lancaster, “Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 46, pp.118–122, Jan. 1998.
[38] A. E. Atia and A. E. Williams, “Narrow-bandpass waveguide filters,” IEEE Trans. Microwave Theory Tech., vol. 20, pp. 258–265, Apr. 1972.
[39] Cheng-Liang, Kau-Hau Chiang, “Dielectric properties of B2O3-doped (1-x)LaAlO3-xSrTiO3 ceramic system at microwave frequency,” Materials Research Bulletin 37 (2002) 1941-1948