簡易檢索 / 詳目顯示

研究生: 陳致嘉
Chen, Chih-Chia
論文名稱: 設計於K-band收發機單刀雙擲開關與壓控振盪器
T/R SPDT Switch and Voltage-Controlled Oscillator Designs in K-band
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: K-band收發機開關單刀雙擲開關正交壓控振盪器
外文關鍵詞: K-band, Transceiver Switch, Single pole Double throw Switch, Quadrature voltage-controlled oscillator (QVCO)
相關次數: 點閱:88下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為設計應用於K-band收發機之子電路設計,可分為兩個部分,分別為收發機開關電路與正交壓控振盪器電路。在本論文中設計之K-band收發機開關電路為使用WIN GaN 0.15 μm pHEMT製程實現,而K-band正交壓控振盪器使用TSMC 40 nm CMOS製程實現。
    在K-band收發機開關電路設計中,開關電晶體的尺寸與控制電壓皆會影響收發機開關的特性,透過並聯電感產生諧振腔在特定頻段達到高隔離度效果並利用多個模態的共振結合技巧使隔離度頻寬增加。且另外設計第二版收發機開關多並聯一組到地電晶體比較改善隔離度的效果。在第一版收發機開關電路量測結果中,開啟電壓0 V、關閉電壓為-15 V且頻率範圍為20 GHz到28 GHz,中心頻率為24 GHz的情況下,插入損耗最佳值為1.8 dB,整體皆低於3 dB;隔離度整體皆大於30.4 dB為,P1dB為20 dBm。第二版收發機開關電路量測結果在插入損耗最佳值為2.3 dB,整體插入損耗皆低於3.1 dB;隔離度整體皆大於32.6 dB,P1dB為20 dBm。兩版收發機開關電路晶片面積皆為1.785 mm2。
    K-band正交壓控振盪器電路主要由兩組壓控振盪器與緩衝器組成,透過將振盪器輸出訊號互相注入偶合電晶體產生四相位輸出訊號。量測頻率可調範圍從20.51 GHz ~ 24.74 GHz (18.6 %)。相位雜訊最佳表現在偏移處1 MHz與10 MHz為 -98.9 dBc/Hz與 -121.4 dBc/Hz,整體輸出功率皆大於 -8 dBm,核心功率消耗為27.1 mW,正交壓控壓控振盪器面積為1.41 mm2。

    This thesis presents the sub-circuit designs of a K-band radio frequency transceiver, which can be divided into two parts, namely the transceiver switch circuit and the quadrature voltage-controlled oscillator circuit. The K-band TX/RX switch circuits designed in this thesis are fabricated by the WIN GaN 0.15 μm pHEMT process, while the K-band quadrature voltage-controlled oscillator is fabricated by the TSMC 40 nm CMOS process.
    The first part is the design of the K-band TX/RX switch circuit. The size of the switching transistor and the control voltage will affect the characteristics of the TX/RX switch. The inductor in parallel with the switch transistor is used to form a resonant circuit to achieve high isolation at a particular frequency. Using multi-mode resonances combinatoin technique to increase the isolation bandwidth. In addition, the second version of the TX/RX switch is designed to add another parallel switching transistor to improve the effect of isolation. Both versions are measured in the same measurement environment, say, the turn-on voltage of 0 V, the turn-off voltage of -15 V, and the frequency range is 20 GHz to 28 GHz. The optimal value of insertion loss for the first version of transceiver is 1.8 dB, and the overall insertion loss is lower than 3 dB. The overall isolation is greater than 30.4 dB and P1dB is more than 20 dBm. The best value of insertion loss for the second version of the TX/RX switch is 2.3 dB and the overall insertion loss is less than 3.1 dB. The overall isolation is greater than 32.6 dB and P1dB is more than 20 dBm. The chip areas of both versions of the switch circuits are 1.785 mm2.
    The second part of this thesis is the design of a K-band quadrature voltage-controlled oscillator which is mainly composed of two groups of oscillator cores and buffers. The four-phase output signals are generated by injecting the differential output signals into another oscillator coupled transistors core. The measurement environment is set at supply voltage of 0.81 V. The measured frequency tuning range is from 20.51 GHz to 24.74 GHz (tuning range of 18.6%). The best phase noise -98.9 dBc/Hz at 1 MHz offset and -121.4 dBc/Hz at 10 MHz offset from the center frequencies. The overall output power is greater than -8 dBm, and the core power consumption is 27.1 mW. The whole chip area is 1.41 mm2.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.3 論文架構 5 第二章 K-band GaN收發機單刀雙擲開關 7 2.1 收發機開關重要參數與架構介紹 7 2.1.1 收發機開關重要參數介紹 8 2.1.2 開關電路架構介紹 13 2.2 K-band GaN收發機開關電路設計 15 2.2.1 隔離度技巧架構選擇 15 2.2.2 電晶體尺寸選擇 18 2.2.3 控制電壓選擇 20 2.3模擬結果 21 2.3.1 第一版K-band收發機開關電路模擬結果 21 2.3.2 第二版K-band收發機開關電路模擬結果 21 第三章 K-band CMOS 正交壓控壓控振盪器 25 3.1 振盪器重要參數介紹與架構介紹 25 3.1.1 振盪器重要參數介紹 26 3.1.2 振盪器基本架構介紹 31 3.1.3 正交壓控振盪器介紹 36 3.2 正交壓控振盪器壓控振盪器設計與模擬結果 41 3.2.1 K-band CMOS 正交壓控振盪器電路設計 41 3.2.2 K-band CMOS 正交壓控振盪器電路模擬 45 第四章 量測結果與討論 49 4.1 K-band 收發機單刀雙擲開關 49 4.1.1 量測考量與環境 49 4.1.2 量測結果與討論 52 4.2 K-band 正交壓控振盪器 61 4.2.1 量測考量與環境 61 4.2.2 量測結果與討論 63 第五章 結論與未來展望 67 5.1結論 67 5.2未來展望 68 參考文獻 70

    [1] 5G spectrum recommendations –April 2017.[Online]Available: https://www.5gamericas.org/wp-content/uploads/2019/07/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf.
    [2] H.Kim, Design and Optimization for 5G Wireless Communications; John Wiley & Sons: West Sussex, UK, 2020.
    [3] https://www.researchgate.net/publication/319122055_5G_Spectrum_Sharing.
    [4] L. Zhuge, "An Ultra-Compact and Reconfigurable X-band GaN-based Control MMIC for 5G Phase Array Transceivers," M.Sc. dissertation, Dep. of Electronics Faculty of Engineering, Carleton Univ., Otawa, Canada, June 2017.
    [5] N. Kaminski, "State of the art and the future of wide band-gap devices," in 2009 13th European Conference on Power Electronics and Applications, pp. 1-9, Sep. 2009.
    [6] A. Bettidi et al., "High power GaN-HEMT microwave switches for X-Band and wideband applications," in 2008 IEEE Radio Frequency Integrated Circuits Symposium, June 2008, pp. 329-332.
    [7] M. Parlak and J. F. Buckwalter, "A Passive I/Q Millimeter-Wave Mixer and Switch in 45-nm CMOS SOI," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1131-1139, March 2013.
    [8] R. Akmal, M. S. Arif, M. Saqib and S. A. Imran, "Design Considerations for GaN based X-Band, High Power and High Isolation SPDT T/R Switch," in 2018 IEEE MTT-S Latin America Microwave Conference (LAMC 2018), Dec. 2018, pp. 1-3.
    [9] Y. -T. Wang, L. -S. Wu, L. -F. Qiu, L. -Y. Shi and J. -F. Mao, "A Non-Reflective T/R Switch with Leakage Cancellation Technique for 5G mm Wave Application," in 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Jan. 2021, pp. 113-116.
    [10] S. Li, I. Kipnis, M. Ismail, "A 10-GHz CMOS Quadrature LC-VCO for Multicore Optical Applications, " IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1626-1634, Oct. 2003.
    [11] H. -y. Chang, Y. -h. Cho, M. -f. Lei, C. -s. Lin, T. -w. Huang and H. Wang, "A 45-GHz Quadrature Voltage Controlled Oscillator with a Reflection-Type IQ Modulator in 0.13-μm CMOS Technology," in 2006 IEEE MTT-S International Microwave Symposium Digest, June 2006, pp. 739-742.
    [12] M. Hossain and A. C. Carusone, "20 GHz low power QVCO and De-skew techniques in 0.13μm digital CMOS," in 2008 IEEE Custom Integrated Circuits Conference, , Sept. 2008 pp. 447-450.
    [13] F. Ellinger and H. Jackel, "38-43 GHz quadrature VCO on 90 nm VLSI CMOS with feedback frequency tuning," in IEEE MTT-S International Microwave Symposium Digest, 2005., June 2005, pp. 1701-1703.
    [14] P. Andreani, A. Bonfanti, L. Romano and C. Samori, "Analysis and design of a 1.8-GHz CMOS LC quadrature VCO," IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
    [15] C.-A. Lin, J. -L. Kuo, K.-Y. Lin and H. Wang, "A 24 GHz low power VCO with transformer feedback," in 2009 IEEE Radio Frequency Integrated Circuits Symposium, June 2009, pp. 75-78.
    [16] K. Kwok and H. C. Luong, "Ultra-low-Voltage high-performance CMOS VCOs using transformer feedback," IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 652-660, March 2005.
    [17] A. W. L. Ng and H. C. Luong, "A 1-V 17-GHz 5-mW CMOS Quadrature VCO Based on Transformer Coupling," IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1933-1941, Sept. 2007.
    [18] S.-J. Yun, S.-B. Shin, H.-C. Choi and S.-G. Lee, "A 1mW current-reuse CMOS differential LC-VCO with low phase noise," in 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference (ISSCC), Feb. 2005, pp. 540-616 vol. 1.
    [19] H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang and S.-G. Lee, "A very low-power quadrature VCO with back-gate coupling," IEEE Journal of Solid-State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
    [20] M. Azhdari, N. Fatahi and H. Nabovati, "QVCO using back-gate connection for low power consumption and phase-noise reduction," in 2010 International Conference on System Science and Engineering, July 2010, pp. 610-613.
    [21] H. -Y. Chang and Y. -T. Chiu, " K -Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 46-59, Jan. 2012.
    [22] M. Jalalifar and G. -S. Byun, "A Current-Reused Back-Gate Coupling QVCO Using Transformer Feedback Structure," IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 534-536, July 2016.
    [23] C. F. Campbell, D. C. Dumka and M. Kao,“Design considerations for GaN based MMICs,” in 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, pp.1-8,.Nov. 2009.
    [24] J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong and H. Wang, "A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm MHEMT technology," in 2008 IEEE MTT-S International Microwave Symposium Digest, June 2008, pp. 551-554.
    [25] Z. -M. Tsai, Y. -S. Jiang, J. Lee, K. -Y. Lin and H. Wang, "Analysis and Design of Bandpass Single-Pole–Double-Throw FET Filter-Integrated Switches," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1601-1610, Aug. 2007.
    [26] F. Thome, E. Ture, P. Brückner, R. Quay and O. Ambacher, "W-band SPDT switches in planar and tri-gate 100-nm gate-length GaN-HEMT technology," in 2018 11th German Microwave Conference (GeMiC), March 2018, pp. 331-334.
    [27] J. Lee et al., "Low Insertion-Loss Single-Pole–Double-Throw Reduced-Size Quarter-Wavelength HEMT Bandpass Filter Integrated Switches," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3028-3038, Dec. 2008.
    [28] S. Osmanoglu and E. Ozbay, "X-Band High Power GaN SPDT MMIC RF Switches," in 2019 European Microwave Conference in Central Europe (EuMCE), May 2019, pp. 83-86.
    [29] Behzad Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE