簡易檢索 / 詳目顯示

研究生: 黃秋皇
Huang, Chiu-Huang
論文名稱: 應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機
2.4GHz CMOS RF Receiver For IEEE 802.11 b/g WLAN Application
指導教授: 盧春林
Lu, Chun-Lin
莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 112
中文關鍵詞: 無線區域網路射頻接收機
外文關鍵詞: RF receiver, WLAN
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使TSMC 0.25mm CMOS製程研製應用於IEEE 802.11b/g WLAN之2.4GHz超外差式接收機RFICs,設計之CMOS RFICs包括:低雜訊放大器(LNA)、混頻器(mixer)、收發切換開關(T/R switch)及壓控振盪器(VCO)。RFIC晶片採用打鎊線(bond-wire)至PCB上進行量測,並加入filter等被動元件以及頻率合成器作整合量測。2.4GHz超外差接收機(中頻374MHz)整合特性量測結果如下:增益約18.15dB,雜訊指數約9.53dB、input P1dB約-20dBm、OIP3約-4.37dBm,整體接收機之鏡像訊號抑制約70dB,不含頻率合成器之接收機功率消耗約為35mW;VCO量測輸出頻率由2009MHz~2116MHz、相位雜訊為-99.7dBc/Hz@100kHz;頻率合成器量測突波大小為-66.6dBc,切換時間在頻道跳躍10MHz頻率時約為23.4ms。數位調變量測方面,802.11b DSSS (CCK)在11Mbps下量測接收訊號之EVM值為7.2%及802.11g OFDM(64-QAM)在54Mbps下測得的EVM值為3.7%。
    論文的另一部分是探討2.4GHz雙降頻式接收機架構,設計與量測之電路包括:鏡像拒斥低雜訊放大器(image-reject LNA)與切換電容調整式壓控振盪器(VCO with switched capacitor tuning),電路採用TSMC 0.18mm製程設計製作。Image-reject LNA量測增益為13dB、雜訊指數量測為2.4dB、IIP3約-2.5dBm、image-reject有21dB衰減效果;VCO量測頻率切換開關在B1=L、B0=H與控制電壓由0V~1.8V情況下,輸出頻率由1589MHz ~ 1664MHz,相位雜訊為-102.6dBc/Hz@100kHz。又本論文並研製一全積體化2.4/5.7GHz同時共用雙頻帶CMOS低雜訊放大器(列於附錄),量測結果:在2.44GHz增益為7.61dB,雜訊指數為5.66dB; 在5.76GHz增益為8.58dB,雜訊指數為6.8dB。

    This thesis presents the development of CMOS RFICs for an IEEE 802.11b/g receiver front-end in a TSMC 0.25mm CMOS process. The 2.4GHz heterodyne CMOS RF receiver includes a LNA, mixer, T/R switch, and quaduature VCO. The RF is from 2.4 to 2.483 GHz and the IF is at 374 MHz. The quadrature VCO has an output frequency from 2009 to 2116MHz with -99.7dBc/Hz @100KHz phase noise. The CMOS VCO is used in a designed 2-GHz frequency synthesizer. The synthesizer with a spur below 66dBc has a settling time of 23.4ms for 10MHz step. The CMOS RF receiver (with the frequency synthesizer) exhibits a conversion gain of 18.15dB, noise figure of 9.53dB, input P1dB of -20dBm, OIP3 of -4.37dBm, and image rejection of 70dB. The power consumption of the CMOS receiver (without the frequency synthesizer) is 37mW at VDD = 2.5 V. For the digital modulation measurement, a 2412MHz 802.11b 11Mbps CCK and 802.11g 54Mbps OFDM signal are applied to the receiver. The measured EVM is about 7.2%(CCK) and 3.7%(OFDM).
    The other part of the thesis is the development of an image-reject CMOS LNA and a CMOS VCO with switched capacitor tuning for a 2.4GHz dual-conversion receiver in a TSMC 0.18 mm CMOS process. The LNA exhibits a noise figure of 2.4dB, linear gain of 13dB, IIP3 of -2.5dBm, and image rejection of 21dB. The VCO has an output frequency from 1589 to 1664MHz with -102.2dBc/Hz@100kHz phase noise (at the switch condition of B1=L and B0=H). Also a fully integrated 2.4/5.7GHz concurrent dual-band 0.18-mm CMOS LNA is presented in the appendix. The dual-band LNA exhibits a linear gain of 7.61dB and noise figure of 5.66dB at 2.44GHz, and a linear gain of 8.58dB and noise figure of 6.8dB at 5.76GHz.

    第一章 緒論 1 1.1 簡介 1 1.2 論文接收機架構簡介 2 第二章 2.4GHz CMOS超外差射頻接收機RFIC (TSMC 0.25mm) 2.1 2.4GHz超外差接收機射頻前端CMOS RFIC架構與規劃 5 2.2 CMOS 低雜訊放大器設計 9 2.2.1 單端低雜訊放大器設計原理與簡介 9 2.2.2 單端低雜訊放大器模擬與量測 11 2.2.3 差動低雜訊放大器原理與設計 13 2.2.4 差動低雜訊放大器模擬與量測 17 2.3 CMOS 混頻器設計 20 2.3.1 混頻器架構及簡介 20 2.3.2 2.4GHz CMOS雙端平衡混頻器設計 25 2.3.3 2.4GHz CMOS雙端平衡混頻器模擬與量測 29 2.4 CMOS收發切換開關(T/R Switch)設計 33 2.4.1 收發切換開關架構簡介 33 2.4.2 CMOS T/R switch設計 34 2.4.3 CMOS T/R switch模擬與量測結果 37 2.5 結論 40 第三章 2GHz CMOS正交四相位壓控振盪器及應用在頻率合成器(TSMC 0.25mm) 3.1 CMOS LC-tank壓控振盪器基本原理 41 3.2 相位雜訊(Phase Noise)分析 43 3.2.1 相位雜訊的定義 43 3.2.2 振盪器的相位雜訊分析 44 3.3 2GHz CMOS 四相位輸出壓控振盪器 47 3.3.1 VCO架構簡介 47 3.3.2 四相位振盪器之設計原理 47 3.3.3 Quadrature VCO設計與量測 51 3.3.4 結果與討論 57 3.4 應用CMOS VCO之2GHz頻率合成器的設計 58 3.4.1 頻率合成器架構簡介 58 3.4.2 鎖相迴路之相位雜訊來源分析 60 3.4.3 迴路濾波器分析與設計 62 3.4.4 頻率合成器設計 66 3.4.5 頻率合成器特性量測 70 3.5 結果與討論 72 第四章 2.4GHz CMOS超外差射頻接收機RFIC整合量測 (TSMC 0.25mm) 4.1 射頻接收機前端量測簡介 73 4.2 射頻與中頻濾波器特性量測 75 4.3 2.4GHz CMOS超外差接收機模組整合特性量測 77 4.4 2.4GHz CMOS超外差接收機模組數位調變量測 79 4.5 結果與討論 82 第五章 2.4GHz CMOS鏡像拒斥LNA及1.6GHz切換電容調整式VCO (TSMC 0.18mm) 5.1 2.4GHz雙降頻式接收機射頻前端架構與規劃 83 5.2 CMOS鏡像拒斥LNA 85 5.2.1 架構簡介與設計 85 5.2.2 模擬與量測 87 5.2.3 結果與討論 90 5.3 1.6GHz 切換電容調整式CMOS VCO 91 5.3.1 設計與量測 91 5.3.2 結果與討論 97 第六章 結論 98 參考文獻 附錄A 全積體化2.4/5.7GHz同時共用雙頻帶CMOS LNA

    [1]IEEE Standard 802.11b: Higher-Speed Physical Layer Extension in the 2.4GHz
    Band.
    [2]IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC)
    and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz
    Band.
    [3]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
    [4]Intersil Corporation, Choosing the IF Frequency for the PRISMII 11MBPS Radio
    Reference Design, 2001.
    [5]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,”
    IEEE J. Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
    [6]OKI Technical Review, GaAs AGC Amplifier for CDMA Cellular Phone Systems,
    number.158, vol.63, April 1997.
    [7]林昂生,應用在數位音訊廣播(DAB)接收機L頻帶降頻器之CMOS單晶射頻微波積體電路,國
    立成功大學電機工程研究所碩士論文,民國九十年。
    [8]Keng Leong Fong and R. G. Meyer, “Monolithic RF Active Mixer Design,” IEEE
    Transactions On Circuits And System, vol. 46, No. 3, pp. 231-239, March 1998.
    [9]A. R. Shahani, D. K. Shaeffer and T. H. Lee, “A 12-mW Wide Dynamic Range CMOS
    Front-End for a Portable GPS Receiver,” IEEE J. Solid-State Circuits, vol.
    32, no. 12, pp. 2061-2070, Dec. 1997.
    [10]朱元凱,應用於802.11a WLAN之5GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工
    程研究所碩士論文,民國九十一年。
    [11]Philips Semiconductor, Philips RF/Wireless Communications Data Handbook,
    1996.
    [12]K. Yamamoto, et. al., “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS
    T/R-MMIC Front-End with a Low Insertion Loss Switch,” IEEE J. of Solid-State
    Circuits, vol. 36, No. 8, pp. 1186-1197, August 2001.
    [13]顏呈機,2.4GHz ISM頻帶收發機射頻前端CMOS RFIC及使用二極體線性器CMOS PA之研
    製,國立成功大學電機工程研究所碩士論文,民國九十一年。
    [14]J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer, Kluwer
    Academic Publishers, Boston, USA, 1998.
    [15]D. B. Leeson, “A Simplified Model of Feedback Oscillator Noise Spectrum,”
    Proceedings of the IEEE, vol. 42, February 1965, pp. 329-330.
    [16]A. Hajimiri and T.H. Lee, “Oscillator phase noise: a tutorial,” IEEE J. of
    Solid-State Circuits, vol.32, No. 3, pp. 326 -336, March 2000.
    [17]B. D. Muer, M. Borremans, M. Steyaert and G. L. puma, “A 2-GHz
    Low-Phase-Noise Integrated LC-VCO Set with Flicker-Noise Upconversion
    Minimization,” IEEE J. of Solid-State Circuits, vol.35, No. 7, pp.
    1034-1038, July 2000.
    [18]C. M. Hung, B. A. Floyd, N. Park, and Kenneth K.O, “Fully integrated
    5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol.
    49, No.1, pp. 17-22, Jan. 2000.
    [19]Marc Tiebout, “Low-power Low-Phase-Noise Differentially Tuned Quadrature VCO
    Design in Standard CMOS,” IEEE J. of Solid-State Circuits, vol.36, No. 7,
    pp. 1018-1024, July 2001.
    [20]C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-mm
    CMOS technology,” IEEE J. of Solid-State Circuits, vol.35, No. 5, pp.
    788-794, May 2000.
    [21]M. Borremans, B. De Muer, and M. Steyaert, “The optimization of GHz
    integrated CMOS quadrature VCO’s based on a poly-phase filter loaded
    differential oscillator,” Proc. of IEEE 2000 Circuits and Systems Symposium,
    vol.2, pp. 28-31.
    [22]A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS
    LC-oscillator with quadrature outputs,” IEEE Solid-State Circuits
    Conference. Tech. Dig. 1996, pp.392-393.
    [23]B. Razavi, Design of Integrated Circuits for Optical Communications,
    McGraw-Hill, 2003.
    [24]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,”
    IEEE J. of Solid-State Circuits, vol.37, No. 12, pp. 1728-1736, Dec 2000.
    [25]P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,”
    IEEE J. of Solid-State Circuits, vol.35, No. 6, pp. 905-910, June 2000.
    [26]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of
    a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. of Solid-State Circuits, vol.37,
    No. 12,pp. 1737-1747, Dec 2002.
    [27]National Semiconductor application note, AN-885, AN-1000, AN-1001, 1996.
    [28]Motorola Semiconductor technical data, MECL PLL COMPONENTS SERIAL PLL
    FREQUENCY SYNTIESIZER, 1997.
    [29]A. Zolfaghari and B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS
    IC,” IEEE J. of Solid-State Circuits, vol.38, no. 2, pp. 176-183, Feb 2003.
    [30]M. Zargari, et. al., “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN
    systems,” IEEE J. of Solid-State Circuits, vol.37, no. 12, pp. 1688-1694,
    Dec 2002.
    [31]Lin. Tsung-Hsien and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency
    synthesizer with an automatic SC tuning loop,” IEEE J. of Solid-State
    Circuits, vol.36, no. 3, pp. 424-431, March 2001.
    [32]H. Hashemi and A. Hajimiri, “Concurrent dual-band CMOS low noise amplifiers
    and receiver architectures,” 2001 Symposium on VLSI Circuits Digest of
    Technical papers, pp. 247-250, June 2001.
    [33]H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise
    amplifiers-theory, design, and applications,” IEEE Transactions on
    Microwave Theory and Techniques , vol.50, No. 1, pp. 288-301, Jan 2002.

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE