| 研究生: |
黃秋皇 Huang, Chiu-Huang |
|---|---|
| 論文名稱: |
應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機 2.4GHz CMOS RF Receiver For IEEE 802.11 b/g WLAN Application |
| 指導教授: |
盧春林
Lu, Chun-Lin 莊惠如 Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 無線區域網路 、射頻接收機 |
| 外文關鍵詞: | RF receiver, WLAN |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使TSMC 0.25mm CMOS製程研製應用於IEEE 802.11b/g WLAN之2.4GHz超外差式接收機RFICs,設計之CMOS RFICs包括:低雜訊放大器(LNA)、混頻器(mixer)、收發切換開關(T/R switch)及壓控振盪器(VCO)。RFIC晶片採用打鎊線(bond-wire)至PCB上進行量測,並加入filter等被動元件以及頻率合成器作整合量測。2.4GHz超外差接收機(中頻374MHz)整合特性量測結果如下:增益約18.15dB,雜訊指數約9.53dB、input P1dB約-20dBm、OIP3約-4.37dBm,整體接收機之鏡像訊號抑制約70dB,不含頻率合成器之接收機功率消耗約為35mW;VCO量測輸出頻率由2009MHz~2116MHz、相位雜訊為-99.7dBc/Hz@100kHz;頻率合成器量測突波大小為-66.6dBc,切換時間在頻道跳躍10MHz頻率時約為23.4ms。數位調變量測方面,802.11b DSSS (CCK)在11Mbps下量測接收訊號之EVM值為7.2%及802.11g OFDM(64-QAM)在54Mbps下測得的EVM值為3.7%。
論文的另一部分是探討2.4GHz雙降頻式接收機架構,設計與量測之電路包括:鏡像拒斥低雜訊放大器(image-reject LNA)與切換電容調整式壓控振盪器(VCO with switched capacitor tuning),電路採用TSMC 0.18mm製程設計製作。Image-reject LNA量測增益為13dB、雜訊指數量測為2.4dB、IIP3約-2.5dBm、image-reject有21dB衰減效果;VCO量測頻率切換開關在B1=L、B0=H與控制電壓由0V~1.8V情況下,輸出頻率由1589MHz ~ 1664MHz,相位雜訊為-102.6dBc/Hz@100kHz。又本論文並研製一全積體化2.4/5.7GHz同時共用雙頻帶CMOS低雜訊放大器(列於附錄),量測結果:在2.44GHz增益為7.61dB,雜訊指數為5.66dB; 在5.76GHz增益為8.58dB,雜訊指數為6.8dB。
This thesis presents the development of CMOS RFICs for an IEEE 802.11b/g receiver front-end in a TSMC 0.25mm CMOS process. The 2.4GHz heterodyne CMOS RF receiver includes a LNA, mixer, T/R switch, and quaduature VCO. The RF is from 2.4 to 2.483 GHz and the IF is at 374 MHz. The quadrature VCO has an output frequency from 2009 to 2116MHz with -99.7dBc/Hz @100KHz phase noise. The CMOS VCO is used in a designed 2-GHz frequency synthesizer. The synthesizer with a spur below 66dBc has a settling time of 23.4ms for 10MHz step. The CMOS RF receiver (with the frequency synthesizer) exhibits a conversion gain of 18.15dB, noise figure of 9.53dB, input P1dB of -20dBm, OIP3 of -4.37dBm, and image rejection of 70dB. The power consumption of the CMOS receiver (without the frequency synthesizer) is 37mW at VDD = 2.5 V. For the digital modulation measurement, a 2412MHz 802.11b 11Mbps CCK and 802.11g 54Mbps OFDM signal are applied to the receiver. The measured EVM is about 7.2%(CCK) and 3.7%(OFDM).
The other part of the thesis is the development of an image-reject CMOS LNA and a CMOS VCO with switched capacitor tuning for a 2.4GHz dual-conversion receiver in a TSMC 0.18 mm CMOS process. The LNA exhibits a noise figure of 2.4dB, linear gain of 13dB, IIP3 of -2.5dBm, and image rejection of 21dB. The VCO has an output frequency from 1589 to 1664MHz with -102.2dBc/Hz@100kHz phase noise (at the switch condition of B1=L and B0=H). Also a fully integrated 2.4/5.7GHz concurrent dual-band 0.18-mm CMOS LNA is presented in the appendix. The dual-band LNA exhibits a linear gain of 7.61dB and noise figure of 5.66dB at 2.44GHz, and a linear gain of 8.58dB and noise figure of 6.8dB at 5.76GHz.
[1]IEEE Standard 802.11b: Higher-Speed Physical Layer Extension in the 2.4GHz
Band.
[2]IEEE Std 802.11a/D7.0-1999, Part11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz
Band.
[3]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[4]Intersil Corporation, Choosing the IF Frequency for the PRISMII 11MBPS Radio
Reference Design, 2001.
[5]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,”
IEEE J. Solid-State Circuits, vol.32, No. 5, pp. 745-759, May 1997.
[6]OKI Technical Review, GaAs AGC Amplifier for CDMA Cellular Phone Systems,
number.158, vol.63, April 1997.
[7]林昂生,應用在數位音訊廣播(DAB)接收機L頻帶降頻器之CMOS單晶射頻微波積體電路,國
立成功大學電機工程研究所碩士論文,民國九十年。
[8]Keng Leong Fong and R. G. Meyer, “Monolithic RF Active Mixer Design,” IEEE
Transactions On Circuits And System, vol. 46, No. 3, pp. 231-239, March 1998.
[9]A. R. Shahani, D. K. Shaeffer and T. H. Lee, “A 12-mW Wide Dynamic Range CMOS
Front-End for a Portable GPS Receiver,” IEEE J. Solid-State Circuits, vol.
32, no. 12, pp. 2061-2070, Dec. 1997.
[10]朱元凱,應用於802.11a WLAN之5GHz U-NII頻帶降頻器CMOS RFIC,國立成功大學電機工
程研究所碩士論文,民國九十一年。
[11]Philips Semiconductor, Philips RF/Wireless Communications Data Handbook,
1996.
[12]K. Yamamoto, et. al., “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS
T/R-MMIC Front-End with a Low Insertion Loss Switch,” IEEE J. of Solid-State
Circuits, vol. 36, No. 8, pp. 1186-1197, August 2001.
[13]顏呈機,2.4GHz ISM頻帶收發機射頻前端CMOS RFIC及使用二極體線性器CMOS PA之研
製,國立成功大學電機工程研究所碩士論文,民國九十一年。
[14]J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer, Kluwer
Academic Publishers, Boston, USA, 1998.
[15]D. B. Leeson, “A Simplified Model of Feedback Oscillator Noise Spectrum,”
Proceedings of the IEEE, vol. 42, February 1965, pp. 329-330.
[16]A. Hajimiri and T.H. Lee, “Oscillator phase noise: a tutorial,” IEEE J. of
Solid-State Circuits, vol.32, No. 3, pp. 326 -336, March 2000.
[17]B. D. Muer, M. Borremans, M. Steyaert and G. L. puma, “A 2-GHz
Low-Phase-Noise Integrated LC-VCO Set with Flicker-Noise Upconversion
Minimization,” IEEE J. of Solid-State Circuits, vol.35, No. 7, pp.
1034-1038, July 2000.
[18]C. M. Hung, B. A. Floyd, N. Park, and Kenneth K.O, “Fully integrated
5.35-GHz CMOS VCOs and prescalers,” IEEE Trans. Microwave Theory Tech., vol.
49, No.1, pp. 17-22, Jan. 2000.
[19]Marc Tiebout, “Low-power Low-Phase-Noise Differentially Tuned Quadrature VCO
Design in Standard CMOS,” IEEE J. of Solid-State Circuits, vol.36, No. 7,
pp. 1018-1024, July 2001.
[20]C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-mm
CMOS technology,” IEEE J. of Solid-State Circuits, vol.35, No. 5, pp.
788-794, May 2000.
[21]M. Borremans, B. De Muer, and M. Steyaert, “The optimization of GHz
integrated CMOS quadrature VCO’s based on a poly-phase filter loaded
differential oscillator,” Proc. of IEEE 2000 Circuits and Systems Symposium,
vol.2, pp. 28-31.
[22]A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS
LC-oscillator with quadrature outputs,” IEEE Solid-State Circuits
Conference. Tech. Dig. 1996, pp.392-393.
[23]B. Razavi, Design of Integrated Circuits for Optical Communications,
McGraw-Hill, 2003.
[24]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,”
IEEE J. of Solid-State Circuits, vol.37, No. 12, pp. 1728-1736, Dec 2000.
[25]P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,”
IEEE J. of Solid-State Circuits, vol.35, No. 6, pp. 905-910, June 2000.
[26]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of
a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. of Solid-State Circuits, vol.37,
No. 12,pp. 1737-1747, Dec 2002.
[27]National Semiconductor application note, AN-885, AN-1000, AN-1001, 1996.
[28]Motorola Semiconductor technical data, MECL PLL COMPONENTS SERIAL PLL
FREQUENCY SYNTIESIZER, 1997.
[29]A. Zolfaghari and B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS
IC,” IEEE J. of Solid-State Circuits, vol.38, no. 2, pp. 176-183, Feb 2003.
[30]M. Zargari, et. al., “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN
systems,” IEEE J. of Solid-State Circuits, vol.37, no. 12, pp. 1688-1694,
Dec 2002.
[31]Lin. Tsung-Hsien and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency
synthesizer with an automatic SC tuning loop,” IEEE J. of Solid-State
Circuits, vol.36, no. 3, pp. 424-431, March 2001.
[32]H. Hashemi and A. Hajimiri, “Concurrent dual-band CMOS low noise amplifiers
and receiver architectures,” 2001 Symposium on VLSI Circuits Digest of
Technical papers, pp. 247-250, June 2001.
[33]H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise
amplifiers-theory, design, and applications,” IEEE Transactions on
Microwave Theory and Techniques , vol.50, No. 1, pp. 288-301, Jan 2002.