簡易檢索 / 詳目顯示

研究生: 林昱甄
Lin, Yu-Jen
論文名稱: 攀爬機踏板內外側角對於下肢生物力學影響
Effects of Medial-Lateral Pedal Wedges on Joint Biomechanics of Lower Extremity during Pinnacle Trainer Exercise
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
中文關鍵詞: 下肢生物力學攀爬機踏板角度
外文關鍵詞: Biomechanical characteristics of lower extremity, Pinnacle trainer, Pedal Wedges
相關次數: 點閱:31下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 攀爬機是一種踏板式運動器材,其運動軌跡類似於踏步機。它的踏板軌跡有矢狀面、冠狀面及垂直面。而且攀爬機具有可調整踏板站立寬度以及踏板角度。先前的研究表明,使用攀爬機在踏板為中性位置時可有效改善退化性膝關節炎的患者下肢的疼痛強度、身體功能和肌肉力量。其他研究表明,腳外翻會減少膝關節內收力矩,且膝關節內收力矩與退化性膝關節炎的嚴重程度有關。而大多數研究都特別關注楔形鞋墊對下肢的影響,很少有研究探討閉鎖動力鏈運動器材中踏板的角度對下肢的影響。本研究的目的是比較踩踏攀爬機時下肢在不同踏板角度下的生物力學特性。本研究招募十八名二十歲以上的健康成人。研究參與者需要有定期運動、沒有任何骨骼肌肉、沒有神經系統疾病、BMI在正常範圍(18.5≦BMI<25.0)或是沒有任何疾病會影響訓練。每位參與者將跟著節拍器以每分鐘60步的節奏踩踏攀爬機並進行運動。在這項研究中,有三種不同的踏板角度,第一個情況是踏板外翻10度,第二個情況踏板呈現0度,第三個情況則是踏板內翻10度。每位參與者將隨機在不同的情況下進行攀爬機上的運動。以八台運動捕捉系統的照相機進行拍攝來記錄反光球在三維空間中的位置以及用六軸測力荷重元執行動作過程中的踏板的反作用力。每位受試者在各情況下共成功收取3次資料,每次15秒。本研究結果發現:不同的踏板角度會影響下肢生物力學,不管是在關節角度、關節受力還是關節力矩皆有影響。比較踏板0度和外翻10度情況的結果,在外翻10度情況下踩踏攀爬機,受試者的膝關節內收力矩較小,但其踝關節外翻力矩較大。但這個變大的踝關節外翻力矩,不足以造成健康成年人的足部傷害。所以本研究發現不管踏板呈現中性和外翻10度下使用攀爬機運動都可以減少膝關節外展力矩,這可以幫助醫生、治療師和教練為使用攀爬機的健康成年人選擇合適的踏板角度,來幫助他們達到預期的訓練目標。

    A Pinnacle trainer is a pedal-type exercise equipment that has pedal trajectory including anterior/posterior, medial/lateral, and vertical aspect movements. Previous studies have shown that zero-degree pedal use in knee osteoarthritis patients improves lower extremity pain, function, and strength. Other studies have shown that the foot everted position reduced the external knee adduction moment, which is related to the severity of the knee osteoarthritis. Although lateral wedge insoles have been studied extensively, few studies have examined the effects of pedal angle on closed kinetic chain exercise equipment. The purpose of this study is to compare the biomechanical characteristics of low limbs at different pedal angles during stepping on pinnacle trainer. This study recruited eighteen healthy adults to compare the biomechanics of the lower limbs at three pedal angles (0˚, eversion 10˚, inversion 10˚) while maintaining a consistent cadence of 60 steps/minute. The results showed that different pedal angles affect lower limb biomechanics in joint angle, force, and moment. Compared to the neutral condition, the external knee adduction moment was smaller in the eversion condition, while the external ankle eversion moment was greater. The observed increase in ankle eversion moment did not result in foot injuries in healthy adults. The external knee adduction moment of the Pinnacle trainer in the neutral condition was found to be lower than that of other CKC equipment and level walking. Thus, both eversion and neutral conditions reduced external knee adduction moment in healthy adults. In conclusion, both eversion and neutral pedal angles on the Pinnacle trainer can reduce the external knee adduction moment in healthy adults, which could help healthcare professionals and coaches select an appropriate pedal angle on Pinnacle trainer.

    摘要 i Abstract ii 誌謝 iii Contents iv List of figures vi List of Tables vii Chapter1 Introduction 1 1.1 Background 1 1.2 Pinnacle trainer 3 1.3 Pedal wedge 6 1.4 Motivation 9 1.5 Purpose 10 1.6 Hypothesis 10 Chapter2 Materials and Methods 11 2.1 Subjects 11 2.2 Equipment 12 2.3 Experiment procedures 19 2.4 Data analysis 21 2.5 Statistical Analysis 27 Chapter3 Results 28 3.1 Step characteristics 28 3.2 Joint angles during step cycle 32 3.3 Joint forces during step cycle 38 3.4 Joint moment during step cycle 47 Chapter4 Discussion 64 4.1 Step characteristics 64 4.2 Joint angles during step cycle 65 4.3 Joint forces during step cycle 67 4.4 Joint moments during step cycle 70 4.5 Limitations and Future work 76 Chapter5 Conclusions 78 References 79

    1. S.L. Wittenauer R, Aden K, Background Paper 6.12 Osteoarthritis, Priority Medicines for Europe and the World "A Public Health Approach to Innovation", World Health Organization (WHO), 2013.
    2. Zimmermann, C. L., Cook, T. M., Bravard, M. S., Hansen, M. M., Honomichl, R. T., Karns, S. T., ... & Zebrowski, R. M. (1994). Effects of stair-stepping exercise direction and cadence on EMG activity of selected lower extremity muscle groups. Journal of Orthopaedic & Sports Physical Therapy, 19(3), 173-180.
    3. Haim, A., Wolf, A., Rubin, G., Genis, Y., Khoury, M., & Rozen, N. (2011). Effect of center of pressure modulation on knee adduction moment in medial compartment knee osteoarthritis. Journal of Orthopaedic Research, 29(11), 1668-1674.
    4. Chang, S. Y., Lin, Y. J., Hsu, W. C., Hsieh, L. F., Lin, Y. H., Chang, C. C., ... & Chen, L. F. (2016). Exercise alters gait pattern but not knee load in patients with knee osteoarthritis. BioMed research international, 2016.
    5. Butler, R. J., Marchesi, S., Royer, T., & Davis, I. S. (2007). The effect of a subject‐specific amount of lateral wedge on knee mechanics in patients with medial knee osteoarthritis. Journal of orthopaedic research, 25(9), 1121-1127.
    6. Hinman, R. S., Bowles, K. A., Metcalf, B. B., Wrigley, T. V., & Bennell, K. L. (2012). Lateral wedge insoles for medial knee osteoarthritis: effects on lower limb frontal plane biomechanics. Clinical biomechanics, 27(1), 27-33.
    7. World Healt h Organization. Guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020.
    8. Deborah Riebe, Jonathan K Ehrman, Gary Liguori, Meir Magal. Chapter 6 General Principles of Exercise Prescription. In: ACSM’s Guidelines for Exercise Testing and Prescription. 10th Ed. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, PA: 2018, 143-179.
    9. Bushman, B. A. (2012). Wouldn’t you like to know: how can I use METs to quantify the amount of aerobic exercise?. ACSM's Health & Fitness Journal, 16(2), 5-7.
    10. Bakhtiary, A. H., & Fatemi, E. (2008). Open versus closed kinetic chain exercises for patellar chondromalacia. British journal of sports medicine, 42(2), 99-102.
    11. Moghadam, Z. F., Atri, A. E., & Javaheri, S. A. H. (2016). Comparing the Effect of Open and Closed Kinetic Chain Exercises in Patients Suffering From Patellofemoral Pain Syndrome. International Journal of Basic Science in Medicine, 1(2), 53-57.
    12. Fitzgerald, G. K. (1997). Open versus closed kinetic chain exercise: issues in rehabilitation after anterior cruciate ligament reconstructive surgery. Physical therapy, 77(12), 1747-1754.
    13. Kaya, D., Güney, H., Akseki, D., & Doral, M. N. (2012). How can we strengthen the quadriceps femoris in patients with patellofemoral pain syndrome?. In Sports Injuries (pp. 1157-1162). Springer, Berlin, Heidelberg.
    14. Kibler, W. B., & Livingston, B. (2001). Closed-chain rehabilitation for upper and lower extremities. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 9(6), 412-421.
    15. Buckthorpe, M., La Rosa, G., & Della Villa, F. (2019). Restoring knee extensor strength after anterior cruciate ligament reconstruction: a clinical commentary. International Journal of Sports Physical Therapy, 14(1), 159.
    16. Fitzgerald, G. K. (1997). Open versus closed kinetic chain exercise: issues in rehabilitation after anterior cruciate ligament reconstructive surgery. Physical therapy, 77(12), 1747-1754.
    17. Kim, M. K., & Yoo, K. T. (2017). The effects of open and closed kinetic chain exercises on the static and dynamic balance of the ankle joints in young healthy women. Journal of physical therapy science, 29(5), 845-850.
    18. PAULOS, L., & ANDREWS, J. R. (2012). Anterior cruciate ligament strain and tensile forces for weight-bearing and non–weight-bearing exercises: a guide to exercise selection. journal of orthopaedic & sports physical therapy, 42(3), 209.
    19. Kwon, Y. J., Park, S. J., Jefferson, J., & Kim, K. (2013). The effect of open and closed kinetic chain exercises on dynamic balance ability of normal healthy adults. Journal of physical therapy science, 25(6), 671-674.
    20. Kvist, J., & Gillquist, J. (2001). Sagittal plane knee translation and electromyographic activity during closed and open kinetic chain exercises in anterior cruciate ligament-deficient patients and control subjects. The American journal of sports medicine, 29(1), 72-82.
    21. Bynum, E. B., Barrack, R. L., & Alexander, A. H. (1995). Open versus closed chain kinetic exercises after anterior cruciate ligament reconstruction: a prospective randomized study. The American journal of sports medicine, 23(4), 401-406.
    22. T. Lu, H. Chien, H. Chen (2007). Joint loading in the lower extremities during elliptical exercise. Medicine & Science in Sports & Exercise, 39 (9), 1651-1658.
    23. Hsu, Yu-Chi. (2014). Comparison of movement performance on pinnacle trainer vs stepper trainer. Master, National Cheng-Kung University.
    24. You, Yu-Lin. (2020) Biomechanical investigation of novel rehabilitation using the pinnacle trainer. Doctoral dissertation, National Cheng-Kung University.
    25. Rogatzki, M. J., Kernozek, T. W., Willson, J. D., Greany, J. F., Hong, D. A., & Porcari, J. P. (2012). Peak muscle activation, joint kinematics, and kinetics during elliptical and stepping movement pattern on a Precor adaptive motion trainer. Research quarterly for exercise and sport, 83(2), 152-159.
    26. You, Y. L., Lin, C. J., Chieh, H. F., Tsai, Y. J., Lee, S. Y., Lin, C. F., ... & Su, F. C. (2020). Comparison of knee biomechanical characteristics during exercise between pinnacle and step trainers. Gait & Posture, 77, 201-206.
    27. Kutzner, I., Trepczynski, A., Heller, M. O., & Bergmann, G. (2013). Knee adduction moment and medial contact force–facts about their correlation during gait. PloS one, 8(12), e81036.
    28. Sharma, L., Hurwitz, D. E., Thonar, E. J. M., Sum, J. A., Lenz, M. E., Dunlop, D. D., ... & Andriacchi, T. P. (1998). Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis & Rheumatism, 41(7), 1233-1240.
    29. Tsai, Y. J., Hsue, B. J., Lin, C. J., & Su, F. C. (2011). Biomechanics during exercise with a novel stairclimber. International journal of sports medicine, 32(09), 712-719.
    30. Foroughi, N., Smith, R., & Vanwanseele, B. (2009). The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. The Knee, 16(5), 303-309.
    31. Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopaedics and trauma, 30(3), 232-238.
    32. Fischer, A. G., Ulrich, B., Hoffmann, L., Jolles, B. M., & Favre, J. (2018). Effect of lateral wedge length on ambulatory knee kinetics. Gait & posture, 63, 114-118.
    33. Ferreira, V., Machado, L., Vilaça, A., Xará-Leite, F., & Roriz, P. (2022). Can slight variations to lateral wedge insoles induce significant biomechanical changes in patients with knee osteoarthritis?. Biomechanics, 2(3), 342-351.
    34. Fantini Pagani, C. H., Hinrichs, M., & Brüggemann, G. P. (2012). Kinetic and kinematic changes with the use of valgus knee brace and lateral wedge insoles in patients with medial knee osteoarthritis. Journal of Orthopaedic Research, 30(7), 1125-1132.
    35. Thorp, L. E., Wimmer, M. A., Foucher, K. C., Sumner, D. R., Shakoor, N., & Block, J. A. (2010). The biomechanical effects of focused muscle training on medial knee loads in OA of the knee: a pilot, proof of concept study. J Musculoskelet Neuronal Interact, 10(2), 166-73.
    36. Kean, C. O., Bennell, K. L., Wrigley, T. V., & Hinman, R. S. (2013). Modified walking shoes for knee osteoarthritis: mechanisms for reductions in the knee adduction moment. Journal of biomechanics, 46(12), 2060-2066.
    37. Resende, R. A., Kirkwood, R. N., Deluzio, K. J., Hassan, E. A., & Fonseca, S. T. (2016). Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait. Clinical biomechanics, 34, 30-37.
    38. Fisher, D. S., Dyrby, C. O., Mündermann, A., Morag, E., & Andriacchi, T. P. (2007). In healthy subjects without knee osteoarthritis, the peak knee adduction moment influences the acute effect of shoe interventions designed to reduce medial compartment knee load. Journal of Orthopaedic Research, 25(4), 540-546.
    39. Gregersen, C. S., Hull, M. L., & Hakansson, N. A. (2006). How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    40. Gardner, J. K. (2013). Effects of lateral shoe wedges and toe-in foot progression angles on the biomechanics of knee osteoarthritis during stationary cycling.
    41. Hatfield, G. L., Cochrane, C. K., Takacs, J., Krowchuk, N. M., Chang, R., Hinman, R. S., & Hunt, M. A. (2016). Knee and ankle biomechanics with lateral wedges with and without a custom arch support in those with medial knee osteoarthritis and flat feet. Journal of Orthopaedic Research, 34(9), 1597-1605.
    42. Gómez Carrión, Á., Atín Arratibe, M. D. L. Á., Morales Lozano, M. R., Martínez Rincón, C., Martínez Sebastián, C., Saura Sempere, Á., ... & Sánchez-Gómez, R. (2022). Changes in the Kinematics of Midfoot and Rearfoot Joints with the Use of Lateral Wedge Insoles. Journal of Clinical Medicine, 11(15), 4536.
    43. Rodrigues, P. T., Ferreira, A. F., Pereira, R. M., Bonfá, E., Borba, E. F., & Fuller, R. (2008). Effectiveness of medial‐wedge insole treatment for valgus knee osteoarthritis. Arthritis Care & Research: Official Journal of the American College of Rheumatology, 59(5), 603-608.
    44. Braga, U. M., Mendonça, L. D., Mascarenhas, R. O., Alves, C. O., Renato Filho, G. T., & Resende, R. A. (2019). Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment. Gait & Posture, 74, 242-249.
    45. Mouri, H., Kim, W. C., Arai, Y., Yoshida, T., Oka, Y., Ikoma, K., ... & Kubo, T. (2019). Effectiveness of medial-wedge insoles for children with intoeing gait who fall easily. Turkish Journal of Physical Medicine and Rehabilitation, 65(1), 9.
    46. Weir, C. B., & Jan, A. (2022). BMI classification percentile and cut off points. [Updated 2021 Jun 29]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Available from https://www. ncbi. nlm. nih. gov/books/NBK541070.
    47. Spry, S., Zebas, C., & Visser, M. (1993). What is leg dominance?. In ISBS-Conference Proceedings Archive.
    48. Davis III, R. B., Ounpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human movement science, 10(5), 575-587.
    49. Sheehy, L., Felson, D., Zhang, Y., Niu, J., Lam, Y. M., Segal, N., ... & Cooke, T. D. V. (2011). Does measurement of the anatomic axis consistently predict hip-knee-ankle angle (HKA) for knee alignment studies in osteoarthritis? Analysis of long limb radiographs from the multicenter osteoarthritis (MOST) study. Osteoarthritis and cartilage, 19(1), 58-64.
    50. Ganesan, M., Lee, Y. J., & Aruin, A. S. (2014). The effect of lateral or medial wedges on control of postural sway in standing. Gait & posture, 39(3), 899-903.
    51. Hagins, M., Pappas, E., Kremenic, I., Orishimo, K. F., & Rundle, A. (2007). The effect of an inclined landing surface on biomechanical variables during a jumping task. Clinical Biomechanics, 22(9), 1030-1036.
    52. Chapman, G. J., Parkes, M. J., Forsythe, L., Felson, D. T., & Jones, R. K. (2015). Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial. Osteoarthritis and cartilage, 23(8), 1316-1322.
    53. Stauffer R.N., Chao E.Y., Brewster R.C. Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop Relat Res. 1977;127:189–196.
    54. Pappas, E., & Hagins, M. (2008). The Effects of. Journal of Dance Medicine & Science, 12(2), 54-58.
    55. Eslami, M., Tanaka, C., Hinse, S., Farahpour, N., & Allard, P. (2006). Effect of foot wedge positions on lower-limb joints, pelvis and trunk angle variability during single-limb stance. The foot, 16(4), 208-213.
    56. Nester, C. J., Van Der Linden, M. L., & Bowker, P. (2003). Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait & posture, 17(2), 180-187.
    57. Chien, H. L., Tsai, T. Y., & Lu, T. W. (2007). The effects of pedal rates on pedal reaction forces during elliptical exercise. Biomedical Engineering: Applications, Basis and Communications, 19(04), 207-214.
    58. Kakihana, W., Akai, M., Nakazawa, K., Takashima, T., Naito, K., & Torii, S. (2005). Effects of laterally wedged insoles on knee and subtalar joint moments. Archives of physical medicine and rehabilitation, 86(7), 1465-1471.
    59. Butler, R. J., Barrios, J. A., Royer, T., & Davis, I. S. (2009). Effect of laterally wedged foot orthoses on rearfoot and hip mechanics in patients with medial knee osteoarthritis. Prosthetics and orthotics international, 33(2), 107-116.
    60. Mendes, A. A. M. T., de Almeida Silva, H. J., Costa, A. R. A., Pinheiro, Y. T., de Almeida Lins, C. A., & de Souza, M. C. (2020). Main types of insoles described in the literature and their applicability for musculoskeletal disorders of the lower limbs: A systematic review of clinical studies. Journal of Bodywork and Movement Therapies, 24(4), 29-36.
    61. Creaby, M. W., May, K., & Bennell, K. L. (2011). Insole effects on impact loading during walking. Ergonomics, 54(7), 665-671.
    62. Turpin, K. M., De Vincenzo, A., Apps, A. M., Cooney, T., MacKenzie, M. D., Chang, R., & Hunt, M. A. (2012). Biomechanical and clinical outcomes with shock-absorbing insoles in patients with knee osteoarthritis: immediate effects and changes after 1 month of wear. Archives of physical medicine and rehabilitation, 93(3), 503-508.
    63. Ly, Q. H., Alaoui, A., Erlicher, S., & Baly, L. (2010). Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running. Journal of biomechanics, 43(2), 310-317.
    64. Cole, G. K. (1995). Loading of the joints of the lower extremities during the impact phase in running. University of Calgary.
    65. Chapman, G. J., Parkes, M. J., Forsythe, L., Felson, D. T., & Jones, R. K. (2015). Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial. Osteoarthritis and cartilage, 23(8), 1316-1322.
    66. Kakihana, W., Akai, M., Yamasaki, N., Takashima, T., & Nakazawa, K. (2004). Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. American journal of physical medicine & rehabilitation, 83(4), 273-278.
    67. Tsujimoto, N., Nunome, H., & Ikegami, Y. (2020). Major factors influencing rearfoot external eversion moment during barefoot walking. Gait & Posture, 79, 189-194.
    68. Jones, R. K., Zhang, M., Laxton, P., Findlow, A. H., & Liu, A. (2013). The biomechanical effects of a new design of lateral wedge insole on the knee and ankle during walking. Human movement science, 32(4), 596-604.
    69. Sun, D., Fekete, G., Mei, Q., & Gu, Y. (2018). The effect of walking speed on the foot inter-segment kinematics, ground reaction forces and lower limb joint moments. PeerJ, 6, e5517.
    70. Haggerty, M., Dickin, D. C., Popp, J., & Wang, H. (2014). The influence of incline walking on joint mechanics. Gait & posture, 39(4), 1017-1021.
    71. Erhart, J. C., Mündermann, A., Mündermann, L., & Andriacchi, T. P. (2008). Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects. Journal of Biomechanics, 41(14), 2989-2994.
    72. Becker, J., Pisciotta, E., James, S., Osternig, L. R., & Chou, L. S. (2014). Center of pressure trajectory differences between shod and barefoot running. Gait & posture, 40(4), 504-509.
    73. Standifird, T. W. (2015). Lower Extremity Biomechanics during Stair Ascent in Healthy and Total Knee Replacement Older Adults.
    74. Novak, A. C., & Brouwer, B. (2011). Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults. Gait & posture, 33(1), 54-60.
    75. Bennell, K. L., Bowles, K. A., Payne, C., Cicuttini, F. M., Williamson, E., Forbes, A., ... & Hinman, R. S. (2010). 006 EFFECTS OF LATERAL WEDGE INSOLES ON SYMPTOMS AND STRUCTURAL DISEASE PROGRESSION IN MEDIAL KNEE OSTEOARTHRITIS: A 12-MONTH RANDOMISED CONTROLLED TRIAL. Osteoarthritis and Cartilage, (18), S11.
    76. DeMers, M. S., Hicks, J. L., & Delp, S. L. (2017). Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries. Journal of biomechanics, 52, 17-23.
    77. Kakihana, W., Akai, M., Nakazawa, K., Naito, K., & Torii, S. (2007). Inconsistent knee varus moment reduction caused by a lateral wedge in knee osteoarthritis. American journal of physical medicine & rehabilitation, 86(6), 446-454.
    78. Khan, S. J., Khan, S. S., Usman, J., Mokhtar, A. H., & Abu Osman, N. A. (2019). Combined effects of knee brace, laterally wedged insoles, and toe-out gait on knee adduction moment and fall risk in moderate medial knee osteoarthritis patients. Prosthetics and orthotics international, 43(2), 148-157.
    79. Kaufman, K. R., Hughes, C., Morrey, B. F., Morrey, M., & An, K. N. (2001). Gait characteristics of patients with knee osteoarthritis. Journal of biomechanics, 34(7), 907-915.
    80. Chang, A., Hayes, K., Dunlop, D., Song, J., Hurwitz, D., Cahue, S., & Sharma, L. (2005). Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Arthritis & Rheumatism, 52(11), 3515-3519.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE