| 研究生: |
戴銘成 Dai, Ming-Cheng |
|---|---|
| 論文名稱: |
離散滑動模式控制於通用型系統的混沌抑制與同步之設計 Chaos Suppression and Synchronization of Generalized Chaotic Systems Based on Discrete Sliding Mode Control |
| 指導教授: |
蔡聖鴻
Tsai, S. H. Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 離散滑動模式 、混沌抑制 、混沌同步 、匹配/非匹配干擾 |
| 外文關鍵詞: | discrete sliding mode, chaos suppression, chaos synchronization, matched/mismatched disturbance |
| 相關次數: | 點閱:105 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們首先考慮特定形式受到匹配/非匹配干擾的混沌系統,討論進入滑動模式切換面後匹配/非匹配干擾所造成的影響。根據此結果,透過離散滑動模式控制,將其進一步延伸至受到匹配/非匹配干擾的通用型系統的混沌抑制。首先確保提出的離散滑動模式控制存在滑動模式切換面,則受控系統進入滑動模式切換面後,額外的匹配/非匹配干擾將被處理。由此結果可得結論,受到匹配干擾的混沌系統,其混沌行為在狀態空間中能被完全抑制到零,受到非匹配干擾的混沌系統,其混沌行為在狀態空間中能被壓制在一定的範圍內。基於上述結果,討論相同的離散滑動模式切換面用於受到匹配/非匹配干擾的同步混沌系統上,並且應用受到匹配干擾的同步混沌系統之結果建構保密通訊系統。
In this thesis, we first consider the chaos suppression of Lorenz system with matched/mismatched disturbances and discuss the effect of matched/mismatched disturbances in the sliding manifold. Then, extend the results obtained with robust chaos suppression for generalized discrete chaotic systems subjected to matched/mismatched disturbances. It is implemented by using discrete sliding mode control (DSMC). The proposed DSMC first ensures the existence of the sliding manifold. Then, the effect of external disturbances including matched and mismatched cases are discussed when the controlled system is driven into the sliding manifold. The proposed results conclude the chaotic behavior of controlled systems with matched disturbances can be fully inhibited to zero or robustly suppressed in an estimated bound in the state space. Based on above, deal with the chaos synchronization problem of generalized discrete chaotic systems, also the matched/mismatched disturbances are considered and apply the results to construct a secure communication system with matched condition.
[1] G. Ablay, “Sliding mode control of uncertain unified chaotic systems,” Nonlinear Analysis: Hybrid Systems, vol. 3, pp. 531-535, 2009.
[2] M. P. Aghababa, H. P. Aghababa, “A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs,” Nonlinear Dynamics, vol. 69(4), pp. 1903-1914, 2012.
[3] M. T. Arjmand, H. Sadeghian, H. Salarieh, A. Alasty, “Chaos control in AFM systems using nonlinear delayed feedback via sliding mode control,” Nonlinear Analysis: Hybrid Systems, vol. 2, pp. 993-1001, 2008.
[4] D. L. Cheng, C. F. Huang, S.Y. Cheng, J. J. Yan, “Synchronization of optical chaos in vertical-cavity surface-emitting lasers via optimal PI controller,” Expert Syst. Appl., vol. 36(3), 6854-6858, 2009.
[5] P. M. F. Córdoba, L. Eduardo, “Prediction-based control of chaos and a dynamic Parrondoʼs paradox,” Physics Letters A, vol. 377, pp. 778-782, 2013.
[6] C. F. Huang, T. L. Liao, C. Y. Chen, and J. J. Yan, “The design of quasi-sliding mode control for a permanent magnet synchronous motor with unmatched uncertainties,” Computers and Mathematics with Applications, vol. 64, pp. 1036-1043, 2012.
[7] H. Guo, S. Lin, J. Liu, “A radial basis function sliding mode controller for chaotic Lorenz system,” Physics Letters A, vol. 351, pp. 257-261, 2006.
[8] J. M. V. Grzybowski, M. J. M. Rafikov, Balthazar, “Synchronization of the unified chaotic system and application in secure communication,” Communications in Nonlinear Science and Numerical Simulation, vol. 14(6), pp. 2793-806, 2009.
[9] Y. Y. Hou, Z. L. Wan, T. L. Liao, “Finite-time synchronization of switched stochastic Rössler systems,” Nonlinear Dynamics, vol. 70, pp. 315-322, 2012.
[10] C. L. Kuo, “Design of a fuzzy sliding-mode synchronization controller for two different chaos systems,” Computers & Mathematics with Applications, vol. 61(8), pp. 2090-2095, 2011.
[11] C. Li, J. C. Sprott, “Mulstability in the Lorenz system: A broken butterfly,” Int. J. Bifurcation. Chaos, vol. 24, pp. 1450131-1, 2014.
[12] C. Li, J. C. Sprott, W. Thio, H. Zhu, “A New Piecewise Linear Hyperchaotic Circuit,” IEEE Transactions on Circuits and Systems--II: Express Briefs vol. 61, pp. 977-981, 2014.
[13] J. Lü , G. Chen, D. Z. Cheng, S. Celikovsky, “Bridge the gap between the Lorenz system and the Chen system,” Int J Bifurcat Chaos, vol. 12, pp. 2917-2926, 2002.
[14] J. S. Lin, C. F. Huang, T. L. Liao, J. J. Yan, “Design and implementation of digital secure communication based on synchronized chaotic systems,” Digital Signal Processing, vol. 20, pp. 229-237, 2010.
[15] S. M. Lee, D. H. Ji, J. H. Park, S. C. Won, “H-infinity synchronization of chaotic systems via dynamic feedback approach,” Physics Letters A, vol. 372(29), pp. 4905-4912, 2008.
[16] A. Mohammad, K. Arash, G. Behzad, “Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement,” Physics Letters A, vol. 374, pp. 4226-4230, 2010.
[17] X. Mei, J. Xing, H. Jiang, C. Hu, L. Zhang, “Adaptive synchronization for a class of cellular neural networks with pantograph delays,” Abstract and Applied Analysis, Article ID 198780, 2013.
[18] A. N. Njah, “Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques,” Nonlinear Dynamics, vol. 61, pp. 1-9, 2010.
[19] E. Ott, C. Grebogi, J. A. Yorke, “Controlling chaos,” Phys Rev Lett, vol. 64, pp. 1196-1199, 1990 .
[20] J. H. Park, D. H. Ji, S. C. Won, S. M. Lee, “ synchronization of time-delayed chaotic systems,” Applied Mathematics and Computation, vol. 204, pp. 170-177, 2008.
[21] L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64(8), pp. 821-4, 1990.
[22] L. M. Pecora, T. L. Carroll, “Driving systems with chaotic signals,” Physical Review A, vol. 44(4), pp. 2374-83, 1991.
[23] M. C. Pai, “Global synchronization of uncertain chaotic systems via discrete-time sliding mode control,” Applied Mathematics and Computation, vol. 228(15), pp. 663-71 (2014).
[24] C. C. Wang, H. T. Yau, “Nonlinear dynamic analysis and sliding mode control for a gyroscope system,” Nonlinear Dynamics, vol. 66, pp. 53-65, 2011.
[25] H. T. Yau, C. L. Kuo, J. J. Yan, “Fuzzy sliding mode control for a class of chaos synchronization with uncertainties,” Int. J. Nonlinear Sci. Numer. Simul. vol. 7, pp. 333-338, 2006.
[26] K. D. Young, V. K. Utkin, U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. Autom. Control Syst. Technol., vol. 7, pp. 328-342, 1999.
[27] M. T. Yassen, “The optimal control of Chen chaotic dynamical system,” Applied Mathematics and Computation, vol. 131, pp. 171-180, 2002.
[28] M. Yan, Y. Shi, “Robust discrete-time sliding mode control for uncertain systems with time-varying state delay,” IET Control Theory and Applications, vol. 2(8), pp. 662-74, 2008.
[29] S. K. Yang, C. L. Chen, H. T. Yau, “Control of chaos in Lorenz system,” Chaos Soltions Fractals, vol. 13, pp. 767-780, 2001.
[30] Y. Yu, H. X. Li, “Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design,” Nonlinear Analysis: Real World Applications, vol. 12(1), pp. 388-93, 2011.
[31] Y. Yu, S. Zhang, “Controlling uncertain Lu system using backstepping design,” Chaos Soltions Fractals, vol. 15, pp. 897-902, 2003.