簡易檢索 / 詳目顯示

研究生: 蔡佳原
Tsai, Jia-Yuan
論文名稱: 單相新型多階層換流器研製
Study and Implementation of a Single-Phase Novel Multilevel Inverter
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 54
中文關鍵詞: 多階層換流器全橋換流器數位訊號處理器
外文關鍵詞: multilevel inverter, H-bridge inverter, DSP (Digital Signal Processor)
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於研製一新型多階層換流器。主要架構多使用兩個功率開關,使提出之換流器可以六個功率開關即輸出五個階層的電壓。由於功率元件減少,因此可達成高功率密度及縮小電路體積,並可同時達成低輸出諧波及縮小濾波器體積,如此可降低電路成本並簡化多階層換流器設計。文中將會說明電路之動作原理及控制流程。最後將研製一輸出功率為1.2 kW之實驗室雛形電路來驗證電路效能,控制部份將由數位訊號處理器(Digital Signal Processor, DSP)來實現,並提出延伸電路。

    In this study, a novel multilevel inverter topology is proposed. By using two additional power components, the proposed inverter which is composed of six power switches can achieve five levels output. With less components, higher power density and small volume of circuit can be realized. Thus, low harmonic distortion is achieved and small size output filter is used. In this way, the total cost of the circuit can be reduced and the design procedure of overall system can be simplified. The detail of mode analysis and the control method are introduced. Finally, a laboratory prototype circuit is realized to verify the performance. The control scheme is presented by DSP (Digital Signal Processor) and the extended topology is proposed.

    CONTENTS Chinese Abstract……………………………………………………………I Abstract……………………………………………………………………II Acknowledgement…………………………………………………………III CONTENTS………………………………………………………………IV List of Figures………………………………………………………………VI List of Tables……………………………………………………………VIII Chapter 1. Introduction……………………………………………………1 1.1 Backgrounds and Motivations………………………………………1 1.2 Organization of Thesis………………………………………………2 Chapter 2. Existing Multilevel Topologies…………………………………3 2.1 Diode-Clamped Inverter……………………………………………3 2.2 Capacitor-Clamped Inverter…………………………………………7 2.3 Cascaded H-Bridge Inverter………………………………………13 2.4 Simplified Multilevel Inverter……………………………………16 2.5 Multilevel Inverter Using Switched Series/Parallel DC Voltage Sources……………………………………………………………17 2.6 Switched-Capacitor Multilevel Inverter Using Series/Parallel DC Conversion………………………………………………………… 20 2.7 Conclusions of Existing Multilevel Topologies……………………22 Chapter 3. Study and Operating Principle of Novel Multilevel Inverter………………………………………………………25 3.1 Proposed Circuit Topology…………………………………………25 3.2 Mode Analysis of Proposed Topology……………………………26 3.3 Simplified Control Method of Proposed Topology………………31 3.4 Simulation Results of Proposed Circuit……………………………37 3.5 Extended Circuit of Proposed Topology…………………………40 Chapter 4. Experimental Results of Novel Multilevel Inverter…………42 4.1 Specification of Circuit and Implementation of Control Method …42 4.2 Experimental Results of the Proposed Topology…………………46 4.3 Discussion of Simulation and Experimental Results…………… 48 Chapter 5. Conclusions and Future Study………………………………49 5.1 Conclusions………………………………………………………49 5.2 Future Study………………………………………………………50 References…………………………………………………………………51 List of Figures Fig. 2.1 Three-Levels Diode-Clamped Inverter………………………………3 Fig. 2.2 Five-Levels Diode-Clamped Inverter ……………………………… 4 Fig. 2.3 Five-Levels Diode-Clamped Inverter with Same Diode Specification…………………………………………………………6 Fig. 2.4 Three-Levels Diode-Clamped Inverter………………………………8 Fig. 2.5 Five-Levels Capacitor-Clamped Inverter ……………………………8 Fig. 2.6 Five-Levels Capacitor-Clamped Inverter with Same Voltage on each capacitor………………………………………………………11 Fig. 2.7 Three-Levels H-Bridge Inverter……………………………………13 Fig. 2.8 Five-Levels Cascaded H-Bridge Inverter …………………………15 Fig. 2.9 Simplified Multilevel Inverter ……………………………………17 Fig. 2.10 Switched Series/Parallel DC Voltage Sources Multilevel Inverter.18 Fig. 2.11 Extended Switched Series/Parallel DC sources Circuit…………19 Fig. 2.12 Switched Series/Parallel Capacitors Multilevel Inverter…………20 Fig. 2.13 Extended Switched Series/Parallel Capacitors Circuit …………22 Fig. 3.1 Novel multilevel inverter topology………………………………26 Fig. 3.2 Mode Analysis ……………………………………………………28 (a) Mode I: Vab equals to Vdc……………………………………28 (b) Mode II: Vab equals to Vdc/2…………………………………29 (c) Mode III: Vab equals to 0………………………………………29 (d) Mode III: Vab equals to 0………………………………………30 (e) Mode IV: Vab equals to -Vdc/2…………………………………31 (f) Mode V: Vab equals to -Vdc……………………………………32 Fig. 3.3 Simplified Multilevel SPWM modulation method…………………33 Fig. 3.4 Simplified Multilevel SPWM modulation method flowchart………37 Fig. 3.5 Simulation results of multilevel output Vab…………………………39 Fig. 3.6 Simulation results of filtered output Vo ……………………………39 Fig. 3.7 FFT simulation results of filtered output Vo ………………………40 Fig. 3.8 Extended circuit of proposed topology ……………………………41 Fig. 4.1 Utility grid voltage vs. PWM signals of S3&S4……………………44 Fig. 4.2 PWM signals of S3, S1&S6…………………………………………44 Fig. 4.3 PWM signals of S3, S5&S6…………………………………………45 Fig. 4.4 PWM signals of S4, S2&S5…………………………………………45 Fig. 4.5 Voltage waveform of Vab……………………………………………46 Fig. 4.6 Voltage waveform of Vo……………………………………………47 Fig. 4.7 Voltage waveform of Vab & Vo………………………………………47 Fig. 4.8 Fourier analysis of Vo………………………………………………48 Fig. 4.9 Energy conversion efficiency………………………………………49 List of Tables Table I. Comparison between Diode-Clamped Inverter………………………6 Table II. Charge and Discharge Mode………………………………………12 Table III. Comparison between Capacitor-Clamped Inverter………………12 Table IV. Comparison between Cascaded H-Bridge Inverter………………15 Table V. Necessary parts of Simplified Multilevel Inverter…………………17 Table VI. Comparison of component numbers………………………………24 Table VII. Output voltage level related to the switches state……………… 27 Table VIII Simulation parameters of proposed circuit………………………38 Table IX. Specification of Key Components………………………………43 Table X. Specification of Circuit Parameters………………………………43

    References
    [1] C. L. Chen, Y. Wang, J. S. Lai, Y. S. Lee, and D. Martin, “Design of
    Parallel Inverters for Smooth Mode Transfer Microgrid Applications,”
    IEEE Trans. Power Electron., vol. 25, no. 1, pp. 6-15, Jan. 2010.
    [2] J. S. Lai and F. Z. Peng, “Multilevel Converters–A New Breed of Power
    Converters,” IEEE Trans. Ind. Applicat., vol. 32, pp. 509–517, May/June
    1996.
    [3] N. A. Rahim and J. Selvaraj, “Multistring Five-Level Inverter with Novel
    PWM Control Scheme for PV Application,” IEEE Trans. Ind. Electron,
    vol. 57, no. 6, pp. 2111 - 2123, June 2010.
    [4] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan and Y. R. Chang,
    “High-Efficiency Power Conversion System for Kilowatt-Level
    Stand-Alone Generation Unit with Low Input Voltage,” IEEE Trans. Ind.
    Electron., vol. 55, no. 10, pp. 3702-3714, Oct. 2008.
    [5] A. Emadi, S. S. Williamson and A. Khaligh, “Power Electronics Intensive
    Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular
    Power Systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp.
    567–577, May 2006.
    [6] P. G. Barbosa, H. A. C. Braga, M. C. B. Rodrigues and E. C. Teixeira,
    “Boost Current Multilevel Inverter and Its Application on Single-Phase
    Grid-Connected Photovoltaic Systems,” IEEE Trans. Power Electron.,
    vol. 21, no. 4, pp. 1116 - 1124, July 2006.
    [7] S. Daher, J. Schmid and F. L. M. Antunes, “Multilevel Inverter Topologies
    for Stand-Alone PV Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2703–2712, July 2008.
    [8] J. S. Lai and F. Z. Peng, “Multilevel Converters–A New Breed of Power
    Converters,” IEEE Trans. Ind. Applicat., vol. 32, pp. 509–517, May/June
    1996.
    [9] J. Rodriguez, J. S. Lai and F. Z. Peng, “Multi-Level Inverter: A Survey of
    Topologies, Controls, and Applications,” IEEE Trans. Ind.Electron.,
    vol.49, no. 4, pp. 724–738, Aug. 2002.
    [10] M. Marchesoni and P. Tensa, “Diode-Clamped Multilevel Converters:
    A Practicable Way to Balance DC-Link Voltages,” IEEE Trans. Ind.
    Electron., vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
    [11] X. Yuan and I. Barbi, “Fundamentals of A New Diode Clamping
    Multilevel Inverter,” IEEE Trans. Power Electron., vol. 15, no. 4, pp.
    711 - 718, July 2000.
    [12] G. J. Su, “Multilevel DC-Link Inverter,” IEEE Trans. Ind. Applicat.,
    vol. 41, no. 3, pp. 848 - 854, May/June 2005.
    [13] P. Lezana, J. Rodriguez and D. A. Oyarzun, “Cascaded Multilevel
    Inverter with Regeneration Capability and Reduced Number of
    Switches,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1059–1066,
    March 2008.
    [14] A. Chen and X. He, “Research on Hybrid-Clamped Multilevel-Inverter
    Topologies,” IEEE Trans. Ind. Electron, vol. 53, no. 6, pp. 1898 - 1907,
    Dec. 2010.
    [15] C. Rech and J. R. Pinheiro, “Hybrid Multilevel Converters: Unified
    Analysis and Design Considerations,” IEEE Trans. Ind. Electron., vol.
    54, no. 2, pp. 1092–1104, April 2007.
    [16] R. Gupta, A. Ghosh and A. Joshi, “Switching Characterization of
    Cascaded Multilevel-Inverter-Controlled Systems,” IEEE Trans. Ind.
    Electron., vol. 55, no. 3, pp. 1047–1058, March 2008.
    [17] Y. Hinago and H. Koizumi, “A Single-Phase Multilevel Inverter Using
    Switched Series/Parallel DC Voltage Sources,” IEEE Trans. Ind.
    Electron., vol. 57, no. 8, pp. 2643 - 2650, Aug. 2010.
    [18] Y. Hinago and H. Koizumi, “A Switched-Capacitor Inverter Using
    Series/Parallel Conversion with Inductive Load,” IEEE Trans. Ind.
    Electron., vol. 59, no. 2, pp. 878 - 887, 2012.
    [19] G. Ceglia, V. Guzmán, C. Sánchez, F. Ibáñez, J. Walter and M. I.
    Giménez, “A New Simplified Multilevel Inverter Topology for DC–AC
    Conversion,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1311 –
    1319, Sep. 2006.
    [20] S. Mekhilef and A. Masaoud, “Xilinx FPGA Based Multilevel PWM
    Single Phase Inverter,” Industrial Technology, 2006. ICIT 2006. IEEE
    International Conference on, pp. 259-264, 15-17 Dec. 2006.
    [21] F. S. Kang, S. J. Park, S. E. Cho, C. U. Kim and T. Ise, “Multilevel
    PWM Inverters Suitable for the Use of Stand-Alone Photovoltaic Power
    Systems,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 906–915,
    Dec. 2005.
    [22] E. Babaei, S. H. Hosseini, G. B. Gharehpetian, M. Tarafdar Haque and
    M. Sabahi, ”Reduction of DC Voltage Sources and Switches in
    Asymmetrical Multilevel Converters Using a Novel Topology,” Elsevier
    Journal of Electric Power Systems Research, 2007, no. 77, pp.
    1073-1085.
    [23] H. Xiangning, A. Chen, W. Hongyang, D. Yan and Z. Rongxiang,
    “Simple Passive Lossless Snubber for High-Power Multilevel Inverters,”
    IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 727–735, June 2006.
    [24] C. M. Wang, C. H. Su, M. C. Jiang and Y. C. Lin, “A ZVS-PWM
    Single-Phase Inverter Using a Simple ZVS-PWM Commutation Cell,”
    IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 758 - 766, Feb. 2008.

    下載圖示 校內:2017-07-27公開
    校外:2017-07-27公開
    QR CODE