| 研究生: |
梁羽伶 Liang, Yu-Ling |
|---|---|
| 論文名稱: |
具備電磁波寬頻吸收特性之三角晶格形水基超材料 Broad-Band Absorption of Electromagnetic Wave by a Water-Based Metamaterial of Triangular Lattice |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 水基超材料 、電磁波吸收 、三角晶格形 、寬頻吸收 |
| 外文關鍵詞: | Water-based metamaterials, Electromagnetic absorber, Triangular lattice shape, Broad-band absorption |
| 相關次數: | 點閱:44 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料是具有亞波長尺度的人造結構,常以符合完美固態晶體的重複模式排列,且可表現出自然界中沒有的獨特物理特性,其中一個重要的特性便是它可以光學上展現負折射特性與電磁波吸收特性。通過改變人工設計的結構幾何參數,可以間接改變超材料的介電常數(ε)和磁導率(μ)以達到理想值,甚至使其變為負值。本研究主要在探討三角晶格水基超材料的吸收特性,水基超材料為以水作為主要材料之超材料,選擇使用水是由於水的介電常數較高、容易取得、成本較低,且其對環境的汙染也較小的原因。本研究對水滴所作的幾何設計分為三個主要構型,第一個構型是現存文獻之水滴陣列超材料,第二構型利用PLA作為乘載水的容器,並雕刻出三角晶格形狀之凹槽以容納水,使水之形狀變為此雕刻出之三角晶格形,第三構型為基於第二構型之結構再加上FSS頻率選擇層,結構由上至下分別為玻璃蓋、有溝槽之PLA容器、水、FSS頻率選擇層、玻璃板以及PEC。本研究預測了不同幾何參數下水基超材料的吸收率、反射率和透射率,探討之電磁波範圍為6~20 GHz,進行之參數分析包含不同水滴形狀與不同參數等的數值模擬,並找出能使水基超材料達到寬頻高吸收率之幾何結構。
In this study, the different geometry and combination of water-based metamaterials are simulated. The geometry of water-based metamaterials was mainly divided into three main structure. The first structure of metamaterial is the water droplet metamaterial extended from the literature. The second structure use PLA engraves a triangular lattice shape for carrying water as a container. The groove is used to carry water, so that the shape of the water becomes the engraved triangular lattice shape. The third structure is the structure based on the second structure plus the FSS frequency selective layer. The structure from top to bottom is glass, grooved PLA container, water, frequency selective layer, glass plate and PEC. By using the radio frequency model, the absorptivity, reflectivity and transmissivity of water-based metamaterials under different geometric parameters are predicted. The range of electromagnetic wave is 6-20 GHz. The parameter analysis includes different water droplet shapes, different size of unit cell of metamaterials and different combination of unit cell of metamaterials. The purpose of this study is to find out the geometric structure that can make water-based metamaterials achieve broadband high absorption rate.
1. N. Fang and Xiang Zhang. (2002) Imaging properties of a metamaterial superlens, Proceedings of the 2nd IEEE Conference on Nanotechnology, Washington, DC, USA, pp.225-228, doi: 10.1109/NANO.2002.1032233.
2. Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G., & Zhang, X. (2008). Three-dimensional optical metamaterial with a negative refractive index. nature, 455(7211), 376-379.
3. A. Pourghorban Saghati, J. S. Batra, J. Kameoka and K. Entesari (2017). A Metamaterial-Inspired Wideband Microwave Interferometry Sensor for Dielectric Spectroscopy of Liquid Chemicals, in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 7, pp. 2558-2571.
4. Veselago, V. G. (1968). The Electrodynamics of substances with simultaneously negative ε and μ. Sov. Phys. Usp., Vol.10, pp.509-514.
5. Shelby, R. A., Smith, D. R., Schultz, S. (2001). Experimental verification of a negative index of refraction. Science, Vol. 292, pp.77-79.
6. Gong, Q.X., Lu, G., Zhao, S., Ma, F.Y. (2010). Advances in research on design of left-handed material. 材料導報, Vol. 24, pp.44-58.
7. Pendry, J. B., Schurig, D., Smith, D. R. (2006). Controlling electromagnetic fields. Science, Vol. 312, pp.1780-1782.
8. Cheng, Y., Yang, H. (2010). Retracted: Design, simulation, and measurement of metamaterial absorber. Microwave and Optical Technology Letters, Vol. 52, pp.877-880.
9. Wood, J. (2008). The top ten advances in materials science. Materials today, 11(1-2), 40-45.
10. Lin, KT., Lin, H., Yang, T. et al. (2020) Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun 11, 1389.
11. Qiu Xu, Y., Heng Zhou, P., Bin Zhang, H., Chen, L., & Jiang Deng, L. (2011). A wide-angle planar metamaterial absorber based on split ring resonator coupling, Journal of Applied Physics, 110(4), 044102.
12. Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., & Lu, W. (2013). A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 45, 747-753.
13. Md. Moniruzzaman, Mohammad Tariqul Islam, Ghulam Muhammad, Mandeep Singh Jit Singh, Md. Samsuzzaman (2020). Quad band metamaterial absorber based on asymmetric circular split ring resonator for multiband microwave applications, Results in Physics, Volume 19, 103467, ISSN 2211-3797.
14. Yoo, Y.J., Ju, S., Park, S.Y., Ju, K.Y., Bong, J., Lim, T., Kim, K.W., Rhee, J.Y., Lee, Y. (2015). Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports, Vol.5, 14018.
15. Wu, Z., Chen, X., Zhang, Z., Heng, L., Wang, S., & Zou, Y. (2019). Design and optimization of a flexible water-based microwave absorbing metamaterial. Applied Physics Express, 12(5), 057003.
16. Zhou, Q., Xue, B., Gu, S., Ye, F., Fan, X., & Duan, W. (2022). Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials. Results in Physics, 38, 105587.
17. Pang, Y., Wang, J., Cheng, Q., Xia, S., Zhou, X. Y., Xu, Z., Cui, T. J. & Qu, S. (2017). Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 110(10), 104103.
18. Wang, L. S., Xia, D. Y., Wang, Y., & Ding, X. Y. (2017). The Tunable Research of Intelligent Flexible Aqueous Metamaterials Absorber. 2017 Asia-Pacific Engineering and Technology Conference, ISBN: 978-1-60595-443-1.
19. Zhang, X., Zhang, D., Fu, Y., Li, S., Wei, Y., Chen, K., Wang, X., Zhuang, S. & Zhuang, S. (2020). 3-D printed swastika-shaped ultrabroadband water-based microwave absorber. IEEE Antennas and Wireless Propagation Letters, 19(5), 821-825.
20. Chen, Y., Chen, K., Zhang, D., Li, S., Xu, Y., Wang, X., & Zhuang, S. (2021). Ultrabroadband microwave absorber based on 3D water microchannels. Photonics Research, 9(7), 1391-1396.
21. Abdulkarim, Y. I., Awl, H. N., Alkurt, F. O., Muhammadsharif, F. F., Saeed, S. R., Karaaslan, M., Bakir, M. & Luo, H. (2021). A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption. journal of materials research and technology, 13, 1150-1158.
22. Xie, J., Quader, S., Xiao, F., He, C., Liang, X., Geng, J., Jin, R., Zhu, W. & Rukhlenko, I. D. (2019). Truly all-dielectric ultrabroadband metamaterial absorber: Water-based and ground-free. IEEE Antennas and Wireless Propagation Letters, 18(3), 536-540.
23. Shen, Z., Huang, X., Yang, H., Xiang, T., Wang, C., Yu, Z., & Wu, J. (2018). An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. Journal of Applied Physics, 123(22), 225106.
24. Shen, Y., Zhang, J., Pang, Y., Wang, J., Ma, H., & Qu, S. (2018). Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics express, 26(12), 15665-15674.
25. Yan, X., Kong, X., Wang, Q., Xing, L., Xue, F., Xu, Y., Jiang, S. & Liu, X. (2020). Water-based reconfigurable frequency selective rasorber with thermally tunable absorption band. IEEE Transactions on Antennas and Propagation, 68(8), 6162-6171.
26. Gao, Z., Fan, Q., Tian, X., Xu, C., Meng, Z., Huang, S., Xiao, T. & Tian, C. (2021). An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth. Optical Materials, 112, 110793.
27. Duan, Z., Wu, B. I., Xi, S., Chen, H., Chen, M. (2009). Research progress in reversed Cherenkov radiation in double-negative metamaterials. Progress in Electromagnetics Research, Vol.90, pp.75-87.
28. Chen, J., Wang, Y., Jia, B., Geng, T., Li, X., Feng, L., Qian, W., Liang, B., Zhang, X., Zhuang, M.G., Zhuang. S. (2011). Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nature Photonics, Vol.5, pp.239-242.
29. 丘瑞安 (2019),水滴陣列之電磁波吸收特性研究,國立成功大學航太工程研究所,碩士論文,2019年6月。
30. Gadani, D. H., Rana, V. A., Bhatnagar, S. P., Prajapati, A. N., & Vyas, A. D. (2012). Effect of salinity on the dielectric properties of water.
31. Malmberg, C. G., & Maryott, A. A. (1956). Dielectric constant of water from 0 to 100 C. Journal of research of the National Bureau of Standards, 56(1), 1-8.
32. Ravika Vijay, Ritu Jain, Sharma K. S. (2014). Dielectric Properties of Water at Microwave Frequencies, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) ETWQQM – 2014 (Volume 3 – Issue 03).
33. Makov, G., & Payne, M. C. (1995). Periodic boundary conditions in ab initio calculations. Physical Review B, 51(7), 4014.
34. Harms, P., Mittra, R., & Ko, W. (1994). Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE transactions on antennas and propagation, 42(9), 1317-1324.