簡易檢索 / 詳目顯示

研究生: 鄭文信
Cheng, Wen-Hsin
論文名稱: 人造輕質骨材混凝土耐久性之研究
指導教授: 方一匡
Fang, I-Kuang
王櫻茂
none
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 混凝土耐久性人造輕質骨材加速法
外文關鍵詞: accelerated method, Light-weight Aggregate, durability, concrete
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   混凝土耐久性的損壞需要經過數年的暴露才能達成,然而工程界無法等待長達數年的耐久性評估。本研究期望以混凝土加速惡化方法,在短時間內獲得長期暴露的結果,進而評估混凝土構造物之耐久能力。本研究製作普通混凝土(Normal Weight Concrete,簡稱NWC)及人造輕質骨材混凝土(Light-weight Aggregate Concrete,簡稱LAC)兩種混凝土,分別以7、14及28天三種材齡之 圓柱試體進行試驗,其加速惡化條件如下:
     1. 浸泡溶液:清水、飽和硫酸鈉
     2. 浸泡溫度: 、
     3. 乾溼循環次數:NWC為21次、LAC為14次
      其中乾溼循環參照ASTM C88之循環方式,浸泡16~18小時,烘乾4~6小時。
      每次循環後量測試體之重量及長度變化,以超音波及衝擊錘試驗評估強度變化情形,配合SEM晶相觀測與鋼筋腐蝕電位了解微結構的變化以及對鋼筋的侵蝕情形。最後,製作三組相同試體於飽和硫酸鈉之浸泡溶液中,以評估加速法之再現性。
      試驗結果如下所述:
    1. 乾溼循環之加速效果最佳,而浸泡溶液及浸泡溫度並無加速效果。
    2. 重量折減率之變異係數(C.V.)僅在+3~-7%以內,證實加速法之再現性良好。
    3. 低水灰比能降低鋼筋腐蝕機率,然而水灰比與鋼筋腐蝕電位之間並非正比關係。

     It requires many years to estimate the durability of concrete structures; however, constructors cannot wait for such a long time – this research is aimed to adopt methods of acceleration by speeding up destruction to obtain long-term results of durability in a short term. In this study, there were two kinds of concrete, NWC (Normal Weight Concrete) and LAC (Light-weight Aggregate Concrete), and three curing periods, separately 7, 14 and 28 days. The experiment was carried out on cylinders. The accelerated terms were as follows:
     1. Solutions were water and saturated sodium sulfate.
     2. Temperatures of solutions were 20 and .
     3. Dry-Wet cyclic times were twenty-one for NWC and fourteen for LAC.
     Dry-Wet cyclic method was according to ASTM C88, that is, immersed for 16~18 hours and dried for 4~6 hours.
    In each cycle, we measured the mass and length changes, strength changes with UST and impacted hammer, micro structure changes with SEM, and steel corrosion voltage with M.C.M. Finally, three same specimens in each type of concrete were immersed in saturated sodium sulfate solution to evaluate the reappearance of accelerated method.
     The test results are as follows:
    1. Dry-Wet cycle had the best accelerated result, but solution and temperature had no accelerated effort.
    2. The Coefficient Variation of mass changed only between +3 to –7%. It proved a nice reappearance in this accelerated method.
    3. Low water/cement could lower probability of steel corrosion, but water/cement and probability of steel corrosion were not direct proportion.

    第一章 前言---------------------------------------------------------------------1 1.1 研究動機---------------------------------------------------------------1 1.2 研究目的---------------------------------------------------------------2 1.3 研究範圍與方法-------------------------------------------------------2 第二章 文獻回顧----------------------------------------------------------------4 2.1 混凝土耐久性的因素--------------------------------------------------4 2.2 硫酸鹽侵蝕-------------------------------------------------------------5 2.2.1 硫酸鹽侵蝕的機理--------------------------------------------5 2.3 鋼筋腐蝕----------------------------------------------------------------8 2.4 人造輕質骨材混凝土(LAC)-------------------------------------12 2.4.1 人造輕質骨材之性質----------------------------------------12 2.4.2 LAC之性質---------------------------------------------------15 2.4.3 LAC之耐久性------------------------------------------------20 第三章 試驗計劃--------------------------------------------------------------22 3.1 試驗材料與基本性質------------------------------------------------22 3.2 試驗變數--------------------------------------------------------------23 3.3 試體製作--------------------------------------------------------------23 3.3.1 試體編號規則-------------------------------------------------23 3.3.2 普通混凝土(NWC)----------------------------------------24 3.3.3 人造輕質骨材混凝土----------------------------------------25 3.3.4 人造輕質骨材鋼筋混凝土-----------------------------------27 3.4 試驗方法與步驟------------------------------------------------------28 3.4.1 乾溼反覆循環加速法----------------------------------------28 3.4.2 單位長度變化-------------------------------------------------29 3.4.3 重量折減率---------------------------------------------------29 3.4.4 超音波(UST)----------------------------------------------30 3.4.5 衝擊錘---------------------------------------------------------34 3.4.6 衝擊錘與超音波複合式非破壞試驗-----------------------35 3.4.7 鋼筋腐蝕電位量測-------------------------------------------38 3.4.8 掃描式電子顯微鏡(SEM)--------------------------------40 第四章 實驗結果--------------------------------------------------------------42 4.1 單位長度變化---------------------------------------------------------42 4.2 重量折減率-----------------------------------------------------------47 4.3 鋼筋腐蝕電位---------------------------------------------------------53 4.4 非破壞性試驗---------------------------------------------------------54 4.4.1 超音波波速---------------------------------------------------54 4.4.2 衝擊錘---------------------------------------------------------59 4.4.3 超音波與衝擊錘之複合方法--------------------------------61 4.5 加速方法之再現性---------------------------------------------------64 4.6 SEM晶相觀測--------------------------------------------------------67 第五章 結論與建議-----------------------------------------------------------70 參考文獻--------------------------------------------------------------------72

    1. Halstead, P. E., “The Effects of sulfates on Portland Cement Concrete and other Products”, Technical Report of Cement and Concrete Association, Lodon, 1954.
    2. ACI Committee 201, "Guide to Durable Concrete," ACI Manuals Journal, V. 88, No. 5, Sep-Oct, 1991, pp. 544-582.
    3. 林志森,『中鋼公司積極開發及推廣爐石利用』,工業污染防治報導月刊,(1988)。
    4. Hansen, W. C., “For Various other Calculation of Volume Change”, Proceedings of American Society for Testing and Materials, Vol. 61, 1961, pp.1038-1043.
    5. 蔡騰龍,「工業冷卻水系統腐蝕形成之原理與抑制」,防蝕工程,第23-33頁,1984。
    6. 黃兆龍,混凝土性質與行為,廣昌,台北,1984。
    7. 張慶泗,「簡介輕質骨材」,土木水利,第三卷,第三期,第78-83頁(1976)。
    8. 王櫻茂、陳豪吉,「台灣地區輕質骨材物理、化學及力學性資料之建立」,內政部建築研究所籌備處專題研究計畫成果報告,1994(7)。
    9. 周永龍,「人造輕質骨材混凝土鹼-骨材反應之特性」,碩士論文,國立成功大學土木研究所,台南(1993)。
    10. Grubl, P. “The influence of aggregate and compressive strength on the stress-strain curve of lightweight aggregate concrete”, Cement and Concrete Research, Vol. 4, No. 6, 1974, pp.657-667.
    11. Grubl, P. “The influence of the tensile strength of lightweight aggregates on the compressive strength of lightweight aggregate concrete”, Cement and Concrete Research, Vol. 6, No. 1, 1976, pp.1-14.
    12. 王櫻茂,人造輕質骨材混凝土-對土木建築結構物之應用,豐生出版社,台南,(1976)。
    13. 吳明憲,「人造輕質骨材混凝土中性化效應之特性」,碩士論文,國立成功大學土木研究所,台南(1993)。
    14. 張大鵬,「混凝土動彈性性質」,土木水利,第二十五卷,第三期,第40-51頁(1998)。
    15. 林維明,「結構用輕質混凝土性質」,結構工程,第七卷,第二期,第89-119頁(1992)。
    16. William, G. H., and Bryant, M., ““Sulfate attack,” or is it?”, Cement and Concrete Research, No. 29, pp.789-791(1999).
    17. 林維明、吳介源,「應用結構輕質骨材混凝土的經濟性評估」,土木技術,第三卷,第四期,第152-164頁(2000)。
    18. 西林新藏、清水昭、片岡宏治,水泥技術年報XX11(1968)。
    19. Best, C. H., and Polivka, M., Magazine of Concrete Research. Nov. (1959).
    20. 國分正胤,Concrete Library 10號,土木學會,昭39.5
    21. Gerwick, B. G., Report of the FIP Commission on Prestressed Lightweight Concrete (1966).
    22. 六車熙、深田隆俊,水泥技術年報X1X(1965)。
    23. Schideler, J. J., Jour. ACI, OCT. (1957).
    24. 丸安隆和、小林一輔、伊藤利治,土木學會Concrete Library 10號,昭39.5。
    25. 林維明,『矽灰混凝土耐硫酸鹽侵蝕之探討(上)』,塗料與塗裝技術,第71卷,第50-56頁(1998)。
    26. 林維明,『矽灰混凝土耐硫酸鹽侵蝕之探討(下)』,塗料與塗裝技術,第70卷,第37-43頁(1998)。
    27. Lea, F. M., The Chemistry of Cement and Concrete, Edward Arnold, London, third Ed, (1980).
    28. Young, J. F., and Mindess, S., Concrete, Prentice-Hall Inc. (1986).
    29. Mehta, P. K., Concrete Structures, Properties and Materials, Prentice-Hall Inc. (1986).
    30. Biczok, I., Concrete Corrosion Concrete Protection, Chemical Publishing, New York, (1967).
    31. Leslie, J. R., and Cheesman, W. J., “An Ultrasonic Method of studying Deterioration and cracking in Concrete structure”, ACI Journal Proceeding, V. 46, No. 1, pp.17-36.
    32. Jones, R.,”Non-Destructive Testing of Concrete”, Cambridge University Press, London, pp.104(1962).
    33. 湛淵源、劉俊伸、李建蓁、陳本育、巫啟明,「超音波在混凝土品質評估與探傷之應用」,中華民國建築學會第七屆建築研究成果發表會論文集,台北,pp.579-584(1994)。
    34. 曾清銓,『推算混凝土強度用非破壞試驗方法手冊(一)』,結構工程,第二卷,第二期,第39-52頁(1987)。
    35. 曾清銓,『推算混凝土強度用非破壞試驗方法手冊(三)』,結構工程,第二卷,第四期,第61-69頁(1987)。
    36. Hisham, Y. Q., “Concrete strength by combined nondestructive methods Simply and reliably predicted”, Cement and Concrete Research, Vol. 30, pp.739-746(2000).
    37. Kheder, G., “Assessment of in situ concrete strength using combined nondestructive testing”, Proceedings of the First international Arab Conference on Maintenance and Rehabilitation of Concrete Structures, Cairo, pp.59-75(1998).
    38. Bellander, U., Concrete strength in finished structures: Part 3. Nondestructive testing methods. Investigation in laboratory in-situ research, Swed Cem Concr Res Inst 3(1977).
    39. de Almeida, I.R., Non-destructive testing of high strength concretes: Rebound (Schmidt hammer and ultrasonic pulse velocity), quality control of concrete structures, in: L. Taerwe, H. Lambotte(Eds.), Proceedings of the International Symposium held by RILEM, Belgium, E&FN SPON, U.K., pp.387-397(1991).
    40. 沈進發,『混凝土強度非破壞試驗─超音波與衝錘法之研究』,土木水利,第八卷,第二期,第63-74頁(1981)。
    41. Wiebenga, J. G., : A Comparison between Various Combined Non-Destructive Testing Methods to Derive the Compressive Strength of Concrete, Rep. No. B1-68-61/1H1.8, Institute TNO Voor Bouwmaterialen en Bouwconstructies, Delft, Aug. (1968).
    42. Facaaoaru, I., : Non-Destructive Testing of Concrete in Romania, I. C. E. Symp. on Non-Destructive Testing of Concrete and Timber, The Institution of Civil Engineers, London, pp.39-49, June, (1969).
    43. 谷川恭維、山田和夫:複合非破壞試驗方法によるコンクリート強度の推定,日本建築學會東海支部研究報告集,No.17,pp.5-9(1979)。
    44. 谷川恭維、山田和夫、小阪義夫:コンクリートの複合非破壞試驗法に關する研究,コンクリート工學年次講演會講演論文集,pp.21-24(1979)。
    45. 尼崎省、明石外世樹:シコミツトハンマーおよび超音波法によるコンクリートの非破壞試驗について.セメント技術年報,Vol.32,pp.275-279(1978)。
    46. Swamy, R. N., and Lixian, W., The ingredients for high performance, in: Ivar Holand et al. (Eds.), Structural Lightweight Aggregate Concrete, Proc. Int. Symp. on Struct. Lightweight Agg. Concr., Sandefjord, Norway, Norwegian concrete Association, Oslo, pp.628-639(1995).
    47. Sarkar, S., and Chandra, L. B., Interdependence of microstructure and strength of structural lightweight aggregate concrete, Cement Concr Composites , Vol. 14, pp.239-248(1992).
    48. Nilsen, U., and Aitcin, P. C., Properties of high-strength concrete containing light-, normal-, and heavyweight aggregate, Cem Concr Aggr, Vol. 14 , No. 1, pp.8-12(1992).
    49. Kohno, K.; Okamoto, T.; Ishikawa, Y.; Sibata, T.; and Mori, H., “Effects of artificial lightweight aggregate on autogenous shrinkage of concrete”, Cement and Concrete Research , Vol. 29, pp.611-614(1999).
    50. 黃秋舜,「超音波波速與輕質混凝土水灰比、齡期與強度關係之研究」,碩士論文,中興大學土木研究所,台中(2000)。
    51. Akoz, F.; Turker, F.; Koral, S.; and Yuzer, N., “Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume”, Cement and Concrete Research , Vol. 29, pp.537-544(1999).
    52. Lawrence, C.D., “The influence of binder type of sulfate resistance”, Cement and Concrete Research, Vol. 22, pp.1047-1058(1992).
    53. Cohen, M.D., and Bentur, A., “Durability of Portland cement-silica fume pastes in magnesium sulfate and sodium sulfate solutions”, ACI Material Journal, Vol. 85, pp.148-157(1988).
    54. 黃仕慶,「鹽害對港灣構造物耐久性之評估」,碩士論文,國立成功大學土木研究所,台南(1998)。
    55. Malhotra, V., “Testing Hardened Concrete: Non-destructive Methods”, ACI, monograph No.9, Detroit, US, (1976).
    56. ASTM C805-85, Test for Rebound Number of Hardened Concrete, ASTM, U.S.A., (1993).
    57. In Place Methods for Determination of Strength of Concrete; ACI Manual of Concrete Practice, Part 2: Construction Practices and Inspection Pavements, ACI 228.1R-989, Detroit, MI, pp.25(1994).
    58. Teodoru, G., “The use of simultaneous nondestructive tests to predict the compressive strength of concrete”, H.S. Lew(Ed.), Nondestructive Testing, ACI SP-112, ACI, Detroit 1, pp.137-148(1988).
    59. Jones, R., and Gatfield, E., “Testing Concrete by an Ultrasonic Pulse Technique”, DSIR Road Research Tech. Paper No. 34, HMSO, London, (1955).
    60. Yun, C.; Choi, K.; Kim, S.; and Song, Y., Comparative evaluation of nondestructive test methods for in-place strength determination, in: H.S. Lew(Ed.), Nondestructive Testing, ACI SP-112, ACI, Detroit, pp.111-136(1988).
    61. Mak D. K., and Steinfl, R. B., “Ultrasonic Velocity Measurements of Au-W Composites”, Nondestr. Test. Eval., Vol.5, pp.39-48, USA(1989).
    62. 朱明信,『利用超音波橫向波之測定以探測混凝土內部之傷害程度』,第六屆非破壞檢測技術研討會論文集,第六屆非破壞檢測技術研討會,台北,第81-89頁(1988)。
    63. 顏聰,『構造物在高溫作用後藉超音波評估其混凝土受損程度之研究』,土木水利,第九卷,第三期,第19-24頁(1982)。
    64. RILEM Recommendation NDT 1. Testing of Concrete by the Ultrasonic Pulse Method. Paris. December (1972).
    65. B. S. 4408 Part5. Recommendation for Nondestructive Methods of Test for Concrete: Measurement of the Velocity of Ultrasonic Pulses-in Concrete. British Standards Institution. London. February (1974).
    66. 吳政忠、劉佩玲、童建樺、王俊楊,『非破壞性混凝土品質檢測系統之研發與應用』,土木技術,第三卷,第十二期,第48-55頁(2000)。
    67. A. Neville, Properties of Concrete, Addison-Wesley Longman, U.K., (1995).
    68. 賴正義,「海水乾濕循環對混凝土性質之影響」,臺電工程月刊,第569期,第54-62頁(1995)。
    69. Cohen, M.D., and Mather, B., “Sulfate attack on concrete—research needs”, ACI Mater. J. 88-M9, pp.62-69(1991).
    70. Skalny, J., and Pierce, J., “Sulfate attack issues”, in: Skalny, J., and Marchand(Eds.), J., Material Science of Concrete – Sulfate Attack Mechanisms, American Ceramic Society, Westerville, OH, pp.49-64(1999).
    71. Clifton, J.R.; Frohnsdorff, G.; and Ferraris, C., “Standards for evaluating the susceptibility of cement-based materials to external sulfate attack”, in: J. Skalny, J. Marchand(Eds.), Material Science of Concrete – Sulfate Attack Mechanisms, American Ceramic Society, Westerville, OH, pp.337-355(1999).
    72. Kalousek, G. L.; Porter, L. C.; and Benton, E. J., “Concrete for long-term service in sulfate environment”, Cement and Concrete Research, Vol.2, pp.79-90(1972).
    73. 顏聰、陳豪吉,『國內輕質骨材之燒製與輕質混凝土之拌製可行性研究』,中華民國建築學會第六屆建築研究成果發表會論文集,台南,第797-804頁(1993)。
    74. 顏聰、陳豪吉,『輕質混凝土配比設計及拌製技術之研究』,中華民國建築學會第七屆建築研究成果發表會論文集,台北,第535-542頁(1994)。

    下載圖示 校內:立即公開
    校外:2005-02-17公開
    QR CODE