| 研究生: |
陳朝楠 Chen, Chau-Nan |
|---|---|
| 論文名稱: |
合成高均勻度之中孔洞氧化矽球 Synthesis of uniform mesoporous silica sphere |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 中孔洞氧化矽材料 、蛋白石 、界面活性劑 、光晶 |
| 外文關鍵詞: | mesoporous silica, opal, photonic crystal, surfactant |
| 相關次數: | 點閱:71 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是以自組合材料化學為理論基礎,使用有機物的界面活性劑當模板,加上矽酸鈉當無機物之來源且在中性條件下(pH=7.0~9.0)合成均勻度高的中孔洞氧化矽球。為了模擬大自然界蛋白石之光晶行為,必須將中孔洞氧化矽球之均勻度提升(< 10﹪),並且具堆積結構良好。本實驗將以pH值、助溶劑(cosolvent)之添加量來控制中孔洞氧化矽球尺寸大小,並且在適當的離心速度下,將大小均勻度高的中孔洞氧化矽球排列成具有光晶結構的薄片。此外,由布拉格繞射原理推論,光晶薄片產生的色澤會因為中孔洞氧化矽球粒徑大小不同而有所不同,粒徑較大(160~180 nm)之氧化矽球產生淡藍色,反之粒徑較小(< 100 nm)會呈現透明。除此之外,也針對氧化矽之前驅物之大小與氧化矽濃度效應作討論。
另外,在合成囊泡狀之中孔洞氧化矽上也有成就。利用中性之區塊型高分子聚二十乙烯氧-聚七十丙烯氧-聚二十乙烯氧(P123)跟矽酸鈉在pH=5.0下進行反應,並且對水量變化、無機物濃度加以討論。另外,將其作為模板來合成中孔洞碳材,並且討論其孔洞結構。
利用金屬氧化物之特性將金屬氧化物嵌入氧化矽的骨架中,合成結合金屬氧化物之中孔洞氧化矽材料,藉以應用在觸媒領域上。此實驗成功地將氧化鈦、或氧化鋯嵌入氧化矽結構中,形成結合金屬氧化物之中孔洞氧化矽材料,且經由不同氧化矽/金屬氧化物之比例加以討論。並且,將合成出結合氧化鈦之中孔洞氧化矽材料應用在光催化反應上,促使NO轉換成NO3-,而其轉化率有將近60﹪。
On the bases of theory of self-assemble chemistry, we proposed new chemical compositions to synthesize the uniform mesoporous silica spheres with different diameters using alkyltrimethylammonium surfactant as structure-directing agent and sodium silicate as silica source in neutral condition (pH=7.0-9.0). In order to simulate opal with photonic crystal structure in nature, our mesoporous silica spheres must have high uniformity (< 10%) and nice order packing. The diameters of the mesoporous silica spheres can be controlled with pH value and the amount of cosolvent, and we can gain opaline flake from suitable centrifugation. However, the color of the opaline flake varies with particle sizes. The bigger particle sizes (160-180 nm) show light blue color, and the smaller ones (< 100 nm) show transparence. Besides, we also confer the effect of size and concentration of inorganic silicate precursor.
The vesicle-like mesoporous silica has been synthesized using block copolymer as surfactant and sodium silicate as silica source at pH value around 5.0. The effect of silica concentration on the mesostructure was discussed. Moreover, the vesicle-like mesoporous silica with high porosity was used as a template to prepare mesocarbon of high surface area, and porosity.
Based on the concepts of coprecipitation, we successfully incorporate titanium and zirconium oxide into mesoporous silica framework. Finally, we use titanium oxide incorporated mesoporous silica as solar catalyst to convert NO into NO3-, and its conversion is up to 60%.
[1] C.N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomas and Peter P. Edwards Chem. Soc. Rev. 2000, 29 27.
[2] Max Schulz, Nature, 1999, 399, 729.
[3] C.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature 1992, 359, 710.
[4] Michael J. Adeogun and John N. Hay, Chemistry of Materials 2000, 12(3), 767.
[5] Ben-Naim, A Hydrophobic Interaction. Plnnum Press, NY, 1980.
[6] J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys. 1980, 13, 121.
[7] J. C. Vartuli, C. T. Kresge, M. E. Leonowicz, A. S. Chu, S. B. McCullen, I. D. Johnson, E. W. Sheppard, Chem. Mater. 1994, 6, 2070.
[8] C. Y. Chen, S. L. Burkett, H. C. Li, M. E. David, Microporous Mater. 1993, 2, 27.
[9] A Steel, S. W. Carr, M. W. Anderson, J. Chem. Soc. Chem. Commun. 1994, 1571.
[10] A. Firouzi, D. Kumar, L. M. Bull, T. Brsier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. NiCol, D. Margolese, G. D. Stucky, B. F. Chemelka, Science 1995, 825.
[11] W. Stöber, A. Frank and E. Bohn, J. Colloid, Interface, Sci., 1968,
26, 62.
[12] M. D. Sacks and T.-Y. Tseng, J. Am. Ceram. Soc., 1984, 67, 526.
[13] E. Matijevic, Langmuir, 1994, 10, 8.
[14] K. Kosuge, T. Murakami, N. Kikukawa and M. Takemori, Chem.
Mater., 2003, 15, 3184.
[15] K. Schumacher, C. du F. von Hohenesche, K. K. Unger, R. Ulrich,
A. D. Chesne, U. Weisner and H. W. Spiess, Adv. Mater., 1999, 11,
1194.
[16] R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A. E.
Ostafin, Chem. Mater., 2002, 14, 4721.
[17] M. Grün, I. Lauer and K. K. Unger, Adv. Mater., 1997, 9, 254.
[18] H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, Langmuir 1997, 13, 6009.
[19] B. Gates, D. Qin, Y. Xia, Adv. Mater. 1999, 11, 466. B. Gates, S. H. Park, Y. Xia, J. Lightwave Technol. 1997, 17, 1956.
[20] K. Busch, S. John, Phys. Rev. Lett. 1999, 83, 967.
[21] Y. A. Vlasov, V. N. Astrotov, O. Z. Astratov, A. A. Kaplynanskii, V. N. Bogomolov, A. V. Prokofiev, Phys. Rev. B 1997, 55, R13 357.
[22] Huo, Q.; Feng, J.; Schuth, F.; Stucky, G. D. Chem. Mater. 1997,
9, 14.
[23] Ozin, G. Adv. Mater. 1992, 4, 612.
[24] Bu¨ chel, C.; Gru¨n, M.; Unger, K. K.; Matsumoto, A: Tsutsumi,
K. Supramolecular Sci. 1998, 5, 253.
[25] R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H.
Mígues, F. Meseguer, L. Vázquez, M. Holgado and Á. Blanco, Adv.
Mater., 1997, 9, 257.
[26] Y. Xia, B. Gates, Y. Yin and Y. Lu, Adv. Mater., 2000, 12, 693.
[27] S. H. Park, B. Gates, Y. Xia, Adv. Mater., 1999, 11, 462
[28] J. V. Sanders, Nature, 1964, 204, 1151.
[29] C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu,
S. Jeftinija, S. Y. Lin, J. Am. Chem. Soc.; 2003; 125(15); 4451.
[30] K. W. Gallis, J. T. Araujo, K. J. Duff, J. G. Moore, C. C. Landry, Adv. Mater., 1999, 11, 1452.
[31] Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U.
Acc. Chem. Res. 1998, 31, 485.
[32] Murugavel, R.; Roesky, H. W. Angew. Chem., Int. Ed. Engl., 1997, 36, 477.
[33] Clerici, M. G.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 1.
[34] Khouw, C. B.; Dartt, C. B.; Li, X.; Davis, M. E. Symposium on New Catalytic Chemistry Utilizing Molecular Sieves, 206th National Meeting; American Chemical Society: Washington, DC, 1993.
[35] Van der Waal, J. C.; Kooyman, P. J.; Jansen, J. C.; van Bekkum,
H. Microporous Mesoporous Mater. 1998, 25 (1-3), 43.
[36] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
C. T. J. Am. Chem. Soc. 1992, 114, 10834.
[37] Corma, A.; Navarro, M. T.; Pariente, J. P. J. Chem. Soc., Chem.
Commun. 1994, 147.
[38] Alba, M. D.; Luan, Z.; Klinowski, J. J. Phys. Chem. 1996, 100, 2178.
[39] Rhee, C. H.; Lee, J. S. Catal. Today 1997, 38, 213.
[40] Zhang, W.; Fro¨ba, M.; Wang, J.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J. J. Am. Chem. Soc. 1996, 118, 9164.
[41] B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 2001, 13, 552.
[42] D. R. Rolison, SCIENCE, 2003, 299, 1698.
[43] N. W. Cant, and W. K. Hall, J. Phys. Chem., 1997, 75, 2914.
[44] M. Haruta, N. Yamada, T. Kobatashi, and S. Iijima, J. Catal, 1989, 115, 301.
[45] C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
[46] H. C. Foley, J. Microporous Mater., 1995, 4, 407.
[47] T. Kyotani, Carbon, 2000, 38, 269.
[48] H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996, 8, 454.
[49] W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
[50] Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
[51] S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
[52] C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
[53] D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 2000, 12, 3397.
[54] R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 2001, 13, 677.
[55] A. Sayari, J. Phys. Chem. B, 1998, 102(28), 5503.
[56] H. P. Lin, Y. R. Cheng, and C. Y. Mou, Chem. Mater., 1998, 10, 3773.
[57] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredickson, B. F. Chemelka, G. D. Stucky, Science, 1998, 279, 548.
[58] Mark S. Morey, Galen D. Stucky, Stephan Schwarz, Michael Fröba, J. Phys. Chem. B, 1999, 103, 2037.
[59] H. C. Foley, J. Microporous Mater., 1995, 4, 407.
[60] X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science, 1997, 276, 923.
[61] J. F. Diaz, K. J. Balkus, F. Bedioui, V. Kurshev, L. Kevan, Chem. Mater., 1997, 9, 61.
[62] Karin Moller, Thomas Bein, and Reinhard X. Fischer, Chem. Mater., 1999, 11(3), 665.
[63] Göteborg, Lund and Stockholm, Surfactant and Polymers in Aqueous solution, November, 1997.
[64] H. P. Lin, C. P. Kao, C. Y. Mou, and S. B. Liu, J. Phys. Chem. B 2000, 104, 7885.
[65] H. P. Lin, C. P. Tsai, Chemistry Letters, 2003, 32, 1092.
[66] R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi and R. K. Singh, J.
Colloid Interface Sci., 2000, 227, 302.
[67] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals;
Princeton University, Princeton, NJ, 1995.
[68] F. García-Santamaría, V. Salgueiriño-Maceira, C. López, and L. M.
Liz-Marzán, Langmuir, 2002, 18, 4519.
[69] P. Ni, P. Dong, B. Cheng, X. Li, and D. Zhang, Adv. Mater., 2001, 13, 437.
[70] H. P. Lin, and C. Y. Mou, Acc. Chem. Res., 2002, 35, 927.
[71] H. Luo, C. Wang, and Y. Yan, Chem. Mater., 2003, 15(20), 3841.
[72] B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 2001, 13, 552.
[73] K. Kosuge, and P. S. Singh, J. Phys. Chem. B, 1999, 103, 3563.
[74] J.A. Navý´o, M.C. Hidalgo, G. Colón, S. G. Botta, and M. I. Litter, Langmuir, 2001, 17, 202.
[75] K. Chaudhari, R. Bal, T. Kr. Das, A. Chandwadkar, D. Srinivas, and
S. Sivasanker, J. Phys. Chem. B, 2000, 104, 11066.
[76] http://nano.nchc.org.tw/photonic/photonic.php
[77] http://www.ssjh.ilc.edu.tw/www2/gem/new_page_36.htm
[78] J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., 1999, 38, 58.