簡易檢索 / 詳目顯示

研究生: 陳朝楠
Chen, Chau-Nan
論文名稱: 合成高均勻度之中孔洞氧化矽球
Synthesis of uniform mesoporous silica sphere
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 128
中文關鍵詞: 中孔洞氧化矽材料蛋白石界面活性劑光晶
外文關鍵詞: mesoporous silica, opal, photonic crystal, surfactant
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗是以自組合材料化學為理論基礎,使用有機物的界面活性劑當模板,加上矽酸鈉當無機物之來源且在中性條件下(pH=7.0~9.0)合成均勻度高的中孔洞氧化矽球。為了模擬大自然界蛋白石之光晶行為,必須將中孔洞氧化矽球之均勻度提升(< 10﹪),並且具堆積結構良好。本實驗將以pH值、助溶劑(cosolvent)之添加量來控制中孔洞氧化矽球尺寸大小,並且在適當的離心速度下,將大小均勻度高的中孔洞氧化矽球排列成具有光晶結構的薄片。此外,由布拉格繞射原理推論,光晶薄片產生的色澤會因為中孔洞氧化矽球粒徑大小不同而有所不同,粒徑較大(160~180 nm)之氧化矽球產生淡藍色,反之粒徑較小(< 100 nm)會呈現透明。除此之外,也針對氧化矽之前驅物之大小與氧化矽濃度效應作討論。
      另外,在合成囊泡狀之中孔洞氧化矽上也有成就。利用中性之區塊型高分子聚二十乙烯氧-聚七十丙烯氧-聚二十乙烯氧(P123)跟矽酸鈉在pH=5.0下進行反應,並且對水量變化、無機物濃度加以討論。另外,將其作為模板來合成中孔洞碳材,並且討論其孔洞結構。
      利用金屬氧化物之特性將金屬氧化物嵌入氧化矽的骨架中,合成結合金屬氧化物之中孔洞氧化矽材料,藉以應用在觸媒領域上。此實驗成功地將氧化鈦、或氧化鋯嵌入氧化矽結構中,形成結合金屬氧化物之中孔洞氧化矽材料,且經由不同氧化矽/金屬氧化物之比例加以討論。並且,將合成出結合氧化鈦之中孔洞氧化矽材料應用在光催化反應上,促使NO轉換成NO3-,而其轉化率有將近60﹪。

      On the bases of theory of self-assemble chemistry, we proposed new chemical compositions to synthesize the uniform mesoporous silica spheres with different diameters using alkyltrimethylammonium surfactant as structure-directing agent and sodium silicate as silica source in neutral condition (pH=7.0-9.0). In order to simulate opal with photonic crystal structure in nature, our mesoporous silica spheres must have high uniformity (< 10%) and nice order packing. The diameters of the mesoporous silica spheres can be controlled with pH value and the amount of cosolvent, and we can gain opaline flake from suitable centrifugation. However, the color of the opaline flake varies with particle sizes. The bigger particle sizes (160-180 nm) show light blue color, and the smaller ones (< 100 nm) show transparence. Besides, we also confer the effect of size and concentration of inorganic silicate precursor.
      The vesicle-like mesoporous silica has been synthesized using block copolymer as surfactant and sodium silicate as silica source at pH value around 5.0. The effect of silica concentration on the mesostructure was discussed. Moreover, the vesicle-like mesoporous silica with high porosity was used as a template to prepare mesocarbon of high surface area, and porosity.
      Based on the concepts of coprecipitation, we successfully incorporate titanium and zirconium oxide into mesoporous silica framework. Finally, we use titanium oxide incorporated mesoporous silica as solar catalyst to convert NO into NO3-, and its conversion is up to 60%.

    第一章 緒論……………………………………………………………..1 1.1 研究的動機………………………………………………………….1 1.1.1 奈米時代………………………………………………………..1 1.1.2 奈米效應………………………………………………………..2 1.2 孔洞材料…………………………………………………………….6 1.2.1 孔洞性材料的介紹……………………………………………..6 1.2.2 界面活性劑與微胞的形成……………………………………..9 1.2.3 一般中孔洞材料的形成機制…………………………………12 1.3 光晶(Photonic Crystal)……………………………………………..15 1.3.1 研究方向與目的………………………………………………15 1.3.2 光晶的發展史…………………………………………………16 1.3.3 光晶之光學性質………………………………………………16 1.3.4 光晶之應用……………………………………………………19 1.4 囊泡狀氧化矽、結合金屬氧化物之小顆粒中孔洞氧化矽材料合成………………………………………………………………………..21 1.4.1 囊泡狀氧化矽之合成…………………………………………22 1.4.2 觸媒的合成方法………………………………………………23 1.4.3 合成中孔洞碳材………………………………………………24 1.4.4 囊泡狀中孔洞氧化矽材料之修飾……………………………26 1.4.5中孔洞分子篩表面修飾的應用………………………………..30 第二章 實驗部分………………………………………………………33 2.1化學藥品……………………………………………………………33 2.2樣品製備合成方法…………………………………………………33 2.2.1合成均勻度高的中孔洞氧化矽球…………………………….33 2.2.2合成結合氧化鈦、氧化鋯之中孔洞氧化矽材料…………….34 2.2.3 囊泡狀中孔洞氧化矽之表面修飾……………………………35 2.2.4 中孔洞碳材之合成方法………………………………………35 2.2.5合成條件……………………………………………………….36 2.3催化反應……………………………………………………………36 2.4產物的鑑定…………………………………………………………37 2.4.1 X-射線粉末繞射儀光譜…………………………………….…37 2.4.2熱重分析儀…...………………………………………………...38 2.4.3氮氣等溫吸附 / 脫附圖譜.…………………………………...38 2.4.4穿透式電子顯微鏡…………………………………………….41 2.4.5 紫外—可見光光譜儀…………………………………………42 2.4.6掃描式電子顯微鏡…………………………………………….43 2.4.7高轉速離心機………………………………………………….43 第三章 矽酸鈉在水中的縮合反應……………………………………45 3.1 研究動機與目的…………………………………………………..45 3.2 實驗設計…………………………………………………………..45 3.3 實驗結果與討論…………………………………………………...46 3.3.1 矽酸鈉在純水中反應…………………………………………46 3.3.2 矽酸鈉在氯化鈉水溶液中的反應……………………………49 第四章 高均勻度中孔洞氧化矽球之合成……………………………55 4.1 研究動機與目的…………………………………………………...55 4.2 實驗設計…………………………………………………………...57 4.3 實驗結果與討論…………………………………………………...59 4.3.1 前驅物大小效應………………………………………………59 4.3.2 pH值效應………………………………………………………62 4.3.3 助溶劑的效應…………………………………………………64 4.3.4 氧化矽濃度效應………………………………………………72 4.3.5輔助鑑定工具…………………………………………………..75 4.3.6 光晶之作品與掃描式顯微鏡圖譜……………………………81 第五章 金屬氧化物結合中孔洞氧化矽材料…………………………87 5.1研究動機與目的……………………………………………………87 5.2 實驗設計…………………………………………………………...88 5.3 實驗結果與討論…………………………………………………...90 5.3.1 囊泡狀之中孔洞氧化矽材料…………………………………91 5.3.1.1 水量變化………………………………………………….95 5.3.1.2 無機物濃度之變化……………………………………….98 5.3.2 囊泡狀中孔洞氧化矽材料之修飾…………………………..103 5.3.3 以囊泡狀氧化矽合成中孔洞碳材…………………………..106 5.3.4結合氧化鈦之中孔洞氧化矽材料……………………………111 5.3.5結合氧化鋯之中孔洞氧化矽材料……………………………117 第六章 結論…………………………………………………………..123 參考文獻………………………………………………………………125

    [1] C.N. Ramachandra Rao, Giridhar U. Kulkarni, P. John Thomas and Peter P. Edwards Chem. Soc. Rev. 2000, 29 27.
    [2] Max Schulz, Nature, 1999, 399, 729.
    [3] C.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature 1992, 359, 710.
    [4] Michael J. Adeogun and John N. Hay, Chemistry of Materials 2000, 12(3), 767.
    [5] Ben-Naim, A Hydrophobic Interaction. Plnnum Press, NY, 1980.
    [6] J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys. 1980, 13, 121.
    [7] J. C. Vartuli, C. T. Kresge, M. E. Leonowicz, A. S. Chu, S. B. McCullen, I. D. Johnson, E. W. Sheppard, Chem. Mater. 1994, 6, 2070.
    [8] C. Y. Chen, S. L. Burkett, H. C. Li, M. E. David, Microporous Mater. 1993, 2, 27.
    [9] A Steel, S. W. Carr, M. W. Anderson, J. Chem. Soc. Chem. Commun. 1994, 1571.
    [10] A. Firouzi, D. Kumar, L. M. Bull, T. Brsier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. NiCol, D. Margolese, G. D. Stucky, B. F. Chemelka, Science 1995, 825.
    [11] W. Stöber, A. Frank and E. Bohn, J. Colloid, Interface, Sci., 1968,
    26, 62.
    [12] M. D. Sacks and T.-Y. Tseng, J. Am. Ceram. Soc., 1984, 67, 526.
    [13] E. Matijevic, Langmuir, 1994, 10, 8.
    [14] K. Kosuge, T. Murakami, N. Kikukawa and M. Takemori, Chem.
    Mater., 2003, 15, 3184.
    [15] K. Schumacher, C. du F. von Hohenesche, K. K. Unger, R. Ulrich,
    A. D. Chesne, U. Weisner and H. W. Spiess, Adv. Mater., 1999, 11,
    1194.
    [16] R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A. E.
    Ostafin, Chem. Mater., 2002, 14, 4721.
    [17] M. Grün, I. Lauer and K. K. Unger, Adv. Mater., 1997, 9, 254.
    [18] H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, Langmuir 1997, 13, 6009.
    [19] B. Gates, D. Qin, Y. Xia, Adv. Mater. 1999, 11, 466. B. Gates, S. H. Park, Y. Xia, J. Lightwave Technol. 1997, 17, 1956.
    [20] K. Busch, S. John, Phys. Rev. Lett. 1999, 83, 967.
    [21] Y. A. Vlasov, V. N. Astrotov, O. Z. Astratov, A. A. Kaplynanskii, V. N. Bogomolov, A. V. Prokofiev, Phys. Rev. B 1997, 55, R13 357.
    [22] Huo, Q.; Feng, J.; Schuth, F.; Stucky, G. D. Chem. Mater. 1997,
    9, 14.
    [23] Ozin, G. Adv. Mater. 1992, 4, 612.
    [24] Bu¨ chel, C.; Gru¨n, M.; Unger, K. K.; Matsumoto, A: Tsutsumi,
    K. Supramolecular Sci. 1998, 5, 253.
    [25] R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H.
    Mígues, F. Meseguer, L. Vázquez, M. Holgado and Á. Blanco, Adv.
    Mater., 1997, 9, 257.
    [26] Y. Xia, B. Gates, Y. Yin and Y. Lu, Adv. Mater., 2000, 12, 693.
    [27] S. H. Park, B. Gates, Y. Xia, Adv. Mater., 1999, 11, 462
    [28] J. V. Sanders, Nature, 1964, 204, 1151.
    [29] C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu,
    S. Jeftinija, S. Y. Lin, J. Am. Chem. Soc.; 2003; 125(15); 4451.
    [30] K. W. Gallis, J. T. Araujo, K. J. Duff, J. G. Moore, C. C. Landry, Adv. Mater., 1999, 11, 1452.
    [31] Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U.
    Acc. Chem. Res. 1998, 31, 485.
    [32] Murugavel, R.; Roesky, H. W. Angew. Chem., Int. Ed. Engl., 1997, 36, 477.
    [33] Clerici, M. G.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 1.
    [34] Khouw, C. B.; Dartt, C. B.; Li, X.; Davis, M. E. Symposium on New Catalytic Chemistry Utilizing Molecular Sieves, 206th National Meeting; American Chemical Society: Washington, DC, 1993.
    [35] Van der Waal, J. C.; Kooyman, P. J.; Jansen, J. C.; van Bekkum,
    H. Microporous Mesoporous Mater. 1998, 25 (1-3), 43.
    [36] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
    C. T. J. Am. Chem. Soc. 1992, 114, 10834.
    [37] Corma, A.; Navarro, M. T.; Pariente, J. P. J. Chem. Soc., Chem.
    Commun. 1994, 147.
    [38] Alba, M. D.; Luan, Z.; Klinowski, J. J. Phys. Chem. 1996, 100, 2178.
    [39] Rhee, C. H.; Lee, J. S. Catal. Today 1997, 38, 213.
    [40] Zhang, W.; Fro¨ba, M.; Wang, J.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J. J. Am. Chem. Soc. 1996, 118, 9164.
    [41] B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 2001, 13, 552.
    [42] D. R. Rolison, SCIENCE, 2003, 299, 1698.
    [43] N. W. Cant, and W. K. Hall, J. Phys. Chem., 1997, 75, 2914.
    [44] M. Haruta, N. Yamada, T. Kobatashi, and S. Iijima, J. Catal, 1989, 115, 301.
    [45] C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    [46] H. C. Foley, J. Microporous Mater., 1995, 4, 407.
    [47] T. Kyotani, Carbon, 2000, 38, 269.
    [48] H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 1996, 8, 454.
    [49] W. Lu, D. D. L. Chung, Carbon, 1997, 35, 427.
    [50] Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 2000, 12, 62.
    [51] S. Han, K. Sohn, T. Hyeon, Chem. Mater., 2000, 12, 3337.
    [52] C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 1999, 146, 3639.
    [53] D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 2000, 12, 3397.
    [54] R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 2001, 13, 677.
    [55] A. Sayari, J. Phys. Chem. B, 1998, 102(28), 5503.
    [56] H. P. Lin, Y. R. Cheng, and C. Y. Mou, Chem. Mater., 1998, 10, 3773.
    [57] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredickson, B. F. Chemelka, G. D. Stucky, Science, 1998, 279, 548.
    [58] Mark S. Morey, Galen D. Stucky, Stephan Schwarz, Michael Fröba, J. Phys. Chem. B, 1999, 103, 2037.
    [59] H. C. Foley, J. Microporous Mater., 1995, 4, 407.
    [60] X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science, 1997, 276, 923.
    [61] J. F. Diaz, K. J. Balkus, F. Bedioui, V. Kurshev, L. Kevan, Chem. Mater., 1997, 9, 61.
    [62] Karin Moller, Thomas Bein, and Reinhard X. Fischer, Chem. Mater., 1999, 11(3), 665.
    [63] Göteborg, Lund and Stockholm, Surfactant and Polymers in Aqueous solution, November, 1997.
    [64] H. P. Lin, C. P. Kao, C. Y. Mou, and S. B. Liu, J. Phys. Chem. B 2000, 104, 7885.
    [65] H. P. Lin, C. P. Tsai, Chemistry Letters, 2003, 32, 1092.
    [66] R. Vacassy, R. J. Flatt, H. Hofmann, K. S. Choi and R. K. Singh, J.
    Colloid Interface Sci., 2000, 227, 302.
    [67] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals;
    Princeton University, Princeton, NJ, 1995.
    [68] F. García-Santamaría, V. Salgueiriño-Maceira, C. López, and L. M.
    Liz-Marzán, Langmuir, 2002, 18, 4519.
    [69] P. Ni, P. Dong, B. Cheng, X. Li, and D. Zhang, Adv. Mater., 2001, 13, 437.
    [70] H. P. Lin, and C. Y. Mou, Acc. Chem. Res., 2002, 35, 927.
    [71] H. Luo, C. Wang, and Y. Yan, Chem. Mater., 2003, 15(20), 3841.
    [72] B. L. Newalkar, J. Olanrewaju, and S. Komarneni, Chem. Mater., 2001, 13, 552.
    [73] K. Kosuge, and P. S. Singh, J. Phys. Chem. B, 1999, 103, 3563.
    [74] J.A. Navý´o, M.C. Hidalgo, G. Colón, S. G. Botta, and M. I. Litter, Langmuir, 2001, 17, 202.
    [75] K. Chaudhari, R. Bal, T. Kr. Das, A. Chandwadkar, D. Srinivas, and
    S. Sivasanker, J. Phys. Chem. B, 2000, 104, 11066.
    [76] http://nano.nchc.org.tw/photonic/photonic.php
    [77] http://www.ssjh.ilc.edu.tw/www2/gem/new_page_36.htm
    [78] J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., 1999, 38, 58.

    下載圖示 校內:立即公開
    校外:2004-07-05公開
    QR CODE