簡易檢索 / 詳目顯示

研究生: 謝曜聰
Hsieh, Yao-Tsung
論文名稱: AB類放大器設計自動化
Design Automation for Class AB Operational Amplifier
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 55
中文關鍵詞: AB類運算放大器設計方法設計自動化
外文關鍵詞: Class AB operational amplifiers, design methods, design automation
相關次數: 點閱:201下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們開發了一個AB類運算放大器的自動化合成軟體,AB類運算放大器由於擁有良好的能量消耗效率及線性度,所以被廣泛地使用在許多類比電路中。然而即使是經驗豐富的電路設計者,設計一個AB類運算放大器並對其最佳化經常是一件耗時的工作。而對於系統設計者而言,也很難快速地在各個不同的製程條件下評估一個AB類運算放大器規格的可行性。在本論文中,我們基於人工設計所歸納出的經驗,針對AB類運算放大器歸納出系統化的設計流程,再根據這套設計流程,實現了一個制定元件尺寸的軟體工具。實驗結果顯示,本論文所開發之軟體所合成的AB類運算放大器,其效能與業界規格相比具有相當優異的競爭力。

    In this thesis, we develop an automatic synthesis tool for class AB operational amplifier. The class AB operational amplifier is widely used in analog circuits because of its good energy consumption efficiency and linearity. However, even for experienced circuit designers, designing and optimizing a class AB operational amplifier is a time-consuming task. For system designers, it is difficult to quickly evaluate the feasibility of a target specification under different process conditions for a class AB operational amplifier. In this thesis, we develop a systematic design flow for class AB operational amplifier based on the designers’ experience and knowledge. Accordingly, a synthesis tool for device sizing has been developed. Experimental results show that the synthesized class AB operational amplifier can achieve competitive performance with industry products.

    中文摘要 III Abstract IV List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 3 Chapter 2 Background Knowledge of Operational Amplifier 4 2.1 Evolution of Operation 4 2.1.1 Class A Amplifier 4 2.1.2 Class B Amplifier 6 2.1.3 Class AB Amplifier 8 2.2 Evolution of Input Topology 10 2.3 Design Considerations 12 Chapter 3 Computer Aided Design of Analog Circuits 16 3.1 Optimization Algorithms 16 3.1.1 Ant Colony Algorithm 16 3.1.2 Genetic Algorithm 18 3.1.3 Simulated Annealing Algorithm 19 3.2 Design Automation Flow 20 3.3 Device Sizing Schemes 22 3.3.1 Knowledge-Based Approach 22 3.3.2 Simulation-Based Approach 23 3.3.3 Equation-Based Approach 23 3.3.4 Neural-Network Approach 24 3.3.5 Summary of Sizing Schemes 24 Chapter 4 The Synthesis Platform 25 4.1 Synthesis Tool Overview 25 4.2 Specifications 27 4.3 Biasing 30 4.4 Sizing Flow 35 4.5 Optimization method 39 Chapter 5 Simulation Results of This Tool 43 5.1 Input Specifications and Output Results 43 5.2 Waveform Analysis 47 Chapter 6 Conclusions 50 6.1 Summary 50 6.2 Future Work 51 Bibliography 52

    [1] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, USA, 2001.
    [2] S. Shukla, B. Pandey and S. Srivastava, “New circuit models of Complementary-Symmetry Class-AB and Class-B Push-Pull Amplifiers,” 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, 2012, pp. 538−542.
    [3] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, "A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries," in IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1505−1513, Dec. 1994.
    [4] H. C. Yang and D. J. Allstot, "Considerations for fast settling operational amplifiers," in IEEE Transactions on Circuits and Systems, vol. 37, no. 3, pp. 326−334, March 1990.
    [5] M. Tan and W. Ki, "A Cascode Miller-Compensated Three-Stage Amplifier With Local Impedance Attenuation for Optimized Complex-Pole Control," in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 440−449, Feb. 2015.
    [6] H. C. Yang and D. J. Allstot, "An active-feedback cascode current source," in IEEE Transactions on Circuits and Systems, vol. 37, no. 5, pp. 644−646, May 1990.
    [7] P. J. Crawley and G. W. Roberts, "High-swing MOS current mirror with arbitrarily high output resistance," in Electronics Letters, vol. 28, no. 4, pp. 361−363, 13 Feb. 1992.
    [8] E. Bruun and P. Shah, "Dynamic range of low-voltage cascode current mirrors," Proceedings of ISCAS'95 - International Symposium on Circuits and Systems, Seattle, WA, USA, 1995, pp. 1328−1331 vol.2.
    [9] M. Dorigo, V. Maniezzo and A. Colorni, "Ant system: optimization by a colony of cooperating agents," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29−41, Feb. 1996.
    [10] B. L. Miller and D. E. Goldberg, "Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise," in Evolutionary Computation, vol. 4, no. 2, pp. 113−131, June 1996.
    [11] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey," in Computer, vol. 27, no. 6, pp. 17−26, June 1994.
    [12] L. Yu and L. Lu, "Research on test data generation based on Modified Genetic and Simulated Annealing Algorithm," 2010 8th International Conference on Supply Chain Management and Information, Hong Kong, 2010, pp. 1−3.
    [13] X. Zhihong, S. Bo and G. Yanyan, "Using Simulated Annealing and Ant Colony Hybrid Algorithm to Solve Traveling Salesman Problem," 2009 Second International Conference on Intelligent Networks and Intelligent Systems, Tianjin, 2009, pp. 507−510.
    [14] P. Shiva, C. Siva, B. Narayanan, T. S. Meetei and K. Pandiyan, "Optimizing multiple-QPM in Fibonacci sequence using simulated annealing algorithm," 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), Chennai, 2017, pp. 1−3.
    [15] B. Al-Khateeb and W. Z. Tareq, "Solving 8-Queens Problem by Using Genetic Algorithms, Simulated Annealing, and Randomization Method," 2013 Sixth International Conference on Developments in eSystems Engineering, Abu Dhabi, 2013, pp. 187−191.
    [16] E. Hjalmarson, “Studies on design automation of analog circuits - the design flow,”
    Ph.D. Dissertation, Linkopings University, Linkoping, Sweden, Dec. 2003.
    [17] M. G. R. Degrauwe, O. Nys, E. Dijkstra, et al., “IDAC: an interactive design tool for analog CMOS circuits,” IEEE J. Solid-State Circuits, vol. SC-22, no. 6, pp. 1106−1116, Dec. 1987.
    [18] R. Harjani, R. A. Rutenbar, and L. R. Carley, “Analog circuit synthesis and exploration in OASYS,” in Proc. IEEE Int. Conf. Computer Design, pp. 44−47, Oct. 1988.
    [19] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: a framework for analog circuit synthesis,” IEEE Trans. Computer-Aided Design, vol. 8, no. 12, pp. 1247−1266, Dec. 1989.
    [20] F. El-Turky and E. E. Perry, “BLADES: an artificial intelligence approach to analog circuit design,” IEEE Trans. Computer-Aided Design, vol. 8, no. 6, pp. 68−692, June 1989.
    [21] C. A. Makris and C. Toumazou, “Analog IC design automation: part II – automated circuit correction by qualitative reasoning,” IEEE Trans. Computer-Aided Design, vol. 14, no. 2, pp. 239−254, Feb. 1995.
    [22] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits, “DELIGHT.SPICE: an optimization-based system for the design of integrated circuits,” IEEE Trans. Computer-Aided Design, vol. 7, no. 4, pp. 501−519, April 1988.
    [23] F. Medeiro, F. V. Fernandez, R. Dominguez-Castro, and A. Rodriguez-Vazquez, “A statistical optimization-based approach for automated sizing of analog cells,” in IEEE/ACM Int. Conf. Computer-Aided Design, pp. 594−597, Nov. 1994.
    [24] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley, “MAELSTROM: efficient simulation-based synthesis for custom analog cells,” in Proc. ACM/IEEE Design
    Automation Conf., pp. 945−950, June 1999.
    [25] R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, and J. R. Hellums, “Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search,” IEEE Trans. Computer-Aided Design, vol. 19, no. 6, pp. 703−717, June 2000.
    [26] H. Y. Koh, C. H. Sequin, and P. R. Gray, “OPASYN: a compiler for CMOS operational amplifiers,” IEEE Trans. Computer-Aided Design, vol. 9, no. 2, pp. 113−125, Feb. 1990.
    [27] P. C. Maulik and L. R. Carley, “Automating analog circuit design using constrained optimization techniques,” in IEEE Int. Conf. Computer-Aided Design, pp. 390−393, Nov. 1991.
    [28] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A mixed-integer nonlinear programming approach to analog circuit synthesis,” in Proc. ACM/IEEE Design Automation Conf., pp. 698−703, June 1992.
    [29] J. P. Harvey, M. I. Elmasry, and B. Leung, “STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits,” IEEE Trans. Computer-Aided Design, vol. 11, no. 11, pp. 1402−1417, Nov. 1992.
    [30] F. Medeiro, B. Perez-Verdu, A. Rodriguez-Vazquez, and J. L. Huertas, “A vertically integrated tool for automated design of ΣΔ modulators,” IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 762−772, July 1995.
    [31] G. Alpaydin, S. Balkir, and G. Dundar, “An evolutionary approach to automatic synthesis of high-performance analog integrated circuits,” IEEE Trans. Evolutionary Computation, vol. 7, no. 3, pp. 240−252, June 2003.

    無法下載圖示 校內:2024-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE