| 研究生: |
劉德星 Liu, Te-Hsing |
|---|---|
| 論文名稱: |
高量子效率與高演色性釔鋁石榴石結構螢光粉之合成及其運用於提升白色發光二極體之發光效率與演色性 The Synthesis of YAG-Based Phosphors with High Quantum Efficiency and High CRI and their Applications in the Enhancement of Luminous Efficiency and CRI of WLEDs |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 釔鋁石榴石螢光粉 、量子效率 、白色發光二極體 、發光效率 |
| 外文關鍵詞: | yttrium aluminum garnet phosphor, quantum efficiency, white light-emitting diodes, luminous efficiency |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今全球節能減碳議題中,開發高效率的白光LED作為照明工具是一致的研究重點與發展方向,而製造出特性佳的白光LED之關鍵就在於高效率及高演色性的螢光粉。釔鋁石榴石(YAG)螢光粉因具有高量子效率、合成簡單與成本低廉等優勢,向來為搭配藍光LED製作白光LED的主流材料。然而,由於YAG:Ce螢光粉缺乏紅色放光波段,YAG:Ce黃色螢光粉搭配藍光LED所製作之白光LED存在演色性不足的缺點。
為了開發出高量子效率與高演色性之YAG:Ce螢光粉以提升封裝後白光LED之發光效率與演色性,本研究透過二階段煆燒固態反應法與成分改質分別合成出高量子效率與高演色性之YAG:Ce螢光粉。在合成高量子效率YAG:Ce螢光粉方面,利用添加不同助熔劑硼酸與氟化鋇以降低煆燒溫度及促進純YAG相之生成,我們發現粉體形貌對於螢光粉之量子效率的關鍵影響,並進一步藉由顆粒成長機制探討使用不同助熔劑造成YAG:Ce粉體形貌差異的原因。在合成高演色性YAG:Ce螢光粉方面,本研究利用鎂、矽分別取代YAG中的八配位與四配位之鋁[Y2.95Al5-2y(Mg, Si)yO12:0.05Ce3+,YAMSG:Ce],使得YAG主體晶格扭曲且共價性增加,促使YAG:Ce之發光光譜往長波長移動,產生紅色波段之螢光。
為了證明上述高量子效率與高演色性YAG:Ce螢光粉之實用性,本研究利用遠距式塗佈技術將高量子效率YAG:Ce封裝於主發光波長為450 nm之藍光LED製作出白光LED,並進一步與商用YAG:Ce螢光粉以相同技術封裝之白光LED進行發光效率與演色性之比較。為了合理化白光LED之特性比較,本研究將螢光膠層厚度固定於 ~600 μm,並將色溫分別控制於~5500 K與~4500 K以製作YAG:Ce基與YAMSG:Ce基白光LED。在350 mA驅動下,最佳化YAG:Ce基白光LED的發光效率(77.2 lm/W)較商用YAG:Ce螢光粉所製作之白光LED(70.87 lm/W)提升了9%;而以最佳化YAMSG:Ce螢光粉取代商用YAG:Ce螢光粉則將白光LED之演色性從68提升至81。
In view of the global problem of energy saving and carbon reduction nowadays, to develop efficient white light-emitting diodes (WLEDs) as the lighting source has become the concurrent research point and development direction. And the efficient phosphor with the high color rendering index (CRI) plays a key role to fabricate a WLED with the excellent performance. Considering that the yttrium aluminum garnet (YAG) phosphor has advantages such as high quantum efficiency, simple synthesis procedure, and low cost, it has always been the mainstream material in conjunction with the blue-LED chips for the fabrication of WLEDs. However, the lack of red components in its emission spectrum leads to the disadvantage of insufficient CRI for a yellow phosphor YAG:Ce-based WLED with a blue-LED chip.
In order to develop YAG:Ce phosphors with high quantum efficiency and high CRI for enhancing the luminous efficiency and CRI of WLEDs, we sought to synthesize high quantum efficiency YAG:Ce and high CRI YAG:Ce on the basis of the two-step calcined solid state reaction method and composition modification, respectively. On the part of synthesizing highly efficient YAG:Ce powders, an attempt was made to reduce the required calcined temperature and expedite the formation of pure YAG phase with the addition of H3BO3 and BaF2 as fluxes. We found that the morphology of YAG:Ce particles is critical to the quantum efficiency of phosphors, and the mechanism of the particle growth was used to explain why the selection of fluxes can cause the difference in YAG:Ce morphologies. On the part of synthesizing high CRI YAG:Ce powders, an attempt was made to cause the lattice distortion and increase the covalence of YAG:Ce by replacing octahedral Al3+ and tetrahedral Al3+ with Mg2+ and Si4+ ions, respectively [Y2.95Al5-2y(Mg, Si)yO12:0.05Ce3+,YAMSG:Ce]. Such composition modification is expected to shift the emission spectrum of YAG:Ce to the longer wavelength, and therefore the increase of red components in the spectral range.
To evaluate the feasibility of the said high quantum efficiency and high CRI YAG:Ce phosphors, these phosphors were combined with the 450-nm blue LEDs by using the remote coating technology. And the luminous efficiency and CRI of our fabricated WLEDs were further compared with those of the commercial YAG:Ce-based WLED under the same phosphor configuration. To validate the comparison among optical properties of these WLEDs, the thickness of the phosphor layers was kept at ~600 μm; moreover, the YAG:Ce-based and YAMSG:Ce-based WLEDs were fabricated under the correlated color temperature (CCT) of ~5500 K and ~4500 K, respectively. Under the drive current of 350 mA, the luminous efficiency of the commercial YAG:Ce-based WLED (70.87 lm/W) was enhanced by 9% compared to that of the WLED using optimized YAG:Ce phosphors (77.2 lm/W). Additionally, the CRI of the commercial YAG:Ce-based WLED was improved from 68 to 81 with the substitution of the optimized YAMSG:Ce for the commercial YAG:Ce.
[1] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A: Materials Science & Processing, 64, 417-18 (1997).
[2] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Optics Letters, 29, 2001-03 (2004).
[3] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photonics Technology Letters, 17, 1160-62 (2005).
[4] Y. Liu, X. Zhang, Z. Hao, W. Lu, X. Liu, X. J. Wang, and J. Zhang, “Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency,” Journal of Physics D: Applied Physics, 44, 075402, 6pp (2011).
[5] Y.Shimizu, K.Sakano, Y.Noguchi, and T.Moriguchi, “Light emitting device having a nitride compound semiconducor and a phosphor containing a garnet fluorescent material,” United States Patent: 5998925 (1997).
[6] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華科技 (2006).
[7] 楊俊英,電子產業用螢光材料之調查,工研院,7 (1992).
[8] X. H. He, M. Y. Guan, Z. C. Li, T. M. Shang, N. Lian, and Q. F. Zhou, “Enhancement of Fluorescence from BaMoO4:Pr3+ Deep-Red-Emitting Phosphor via Codoping Li+ and Na+ Ions,” Journal of the American Ceramic Society, 94 [8] 2483–2488 (2011).
[9] Y. C. Kang, I. W. Lenggoro, K. Okuyama, and S. B. Park, “Luminescence Characteristics of Y2SiO5:Tb Phosphor Particles Directly,” Journal of The Electrochemical Society, 146 [3] 1227–1230 (1999).
[10] J. G. Li, X. D. Li, X. D. Sun, and T. Ishigaki, “Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping,” The Journal of Physical Chemistry C, 112 [31] 11707–11716 (2008).
[11] H. S. Lee and J. W. Yoo, “Yellow phosphors coated with TiO2 for the enhancement of photoluminescence and thermal stability,” Applied Surface Science, 257 [20] 8355–8359 (2011).
[12] Y. C. Kang, M. A. Lim, H. D. Park, and M. Han, “Ba2+ Co-doped Zn2SiO4 : Mn Phosphor Particles Prepared by Spray Pyrolysis Process,” Journal of The Electrochemical Society, 150 [1] H7–H11 (2003).
[13] M. S. Tsai, W. C. Fu, and W. C. Wu, “Effect of the aluminum source on the formation of yttrium aluminum garnet (YAG) powder via solid state reaction,” Journal of Alloys and Compounds, 455 [1-2] 461-464 (2008).
[14] Y. Pan, M. Wu and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Journal of Physics and Chemistry of Solids, 65 [5] 845-850 (2004).
[15] C. W. Won, H. H. Nersisyan, H. I. Won, J. H. Lee and K. H. Lee, “Efficient solid-state route for the preparation of spherical YAG:Ce phosphor particles,” Journal of Alloys and Compounds, 509 [5] 2621-2626 (2011).
[16] Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the Luminescent Properties of Tb3+-Substituted YAG:Ce, Gd Phosphors,” Journal of The Electrochemical Society, 152 [6] J41-J45 (2005).
[17] Y. Shuai, Y.Z. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photonics Technology Letters, 23, 137-139 (2011).
[18] R. Y. Yu, S. Z. Jin, S. Y. Cen, and P. Liang, “Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes,” IEEE Photonics Technology Letters, 22, 1765-1767 (2010).
[19] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photonics Technology Letters, 23, 552-554 (2011).
[20] [12] B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting Morphology of Y3Al5O12:Ce3+ Phosphors for Minimizing Scattering Loss in the pc-LED Package,” Journal of The Electrochemical Society, 159, J96-J106 (2012).
[21] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Applied Optics, 49, 247-257 (2010).
[22] J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor Concentration Effects on Optothermal Characteristics of Phosphor Converted White Light-Emitting Diodes,” Journal of Electronic Packaging, 132, 031010-031012 (2010).
[23] N. T. Tran and F. G. Shi, “Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes,” Journal of Lightwave Technology, 26, 3556-3559 (2008).
[24] Z.-Y. Liu, S. Liu, K. Wang, and X.-B. Luo, “Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation,” IEEE Transactions on Components and Packaging Techologies, 33, 680-687 (2010).
[25] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” Journal of Lightwave Technology, 28, 3226-3232 (2010).
[26] C.-C. Tsai, J. Wang, M.-H. Chen, Y.-C. Hsu, Y.-J. Lin, C.-W. Lee, S.-B. Huang, H.-L. Hu, and W.-H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, 9, 367-370 (2009).
[27] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” Journal of Lightwave Technology, 27, 5145-5149 (2009).
[28] C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE Journal of Selected Topics in Quantum Electronics, 15, 1181-1188 (2009).
[29] S. C. Huang, J. K. Wu, and W.-J. Hsu, “Particle Size Effect on the Packaging Performance of YAG:Ce Phosphors in White LEDs,” International of Journal Applied Ceramic Technology, 6, 465–469 (2009).
[30] T. Fukui, K. Kamon, J. Takeshita, H. Hayashi, T. Miyachi, Y. Uchida, S. Kurai, and T. Taguchi, “Superior Illuminant Characteristics of Color Rendering and Luminous Efficacy in Multilayered Phosphor Conversion White Light Sources Excited by Near-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, 48, 112101, 6pp (2009).
[31] Y. Zhu and N. Narendran, “Investigation of Remote-Phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Japanese Journal of Applied Physics, 49, 100203, 3pp (2010).
[32] Y.-H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters, 34, 1-3 (2009).
[33] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Optics Express, 18, 5055-5060 (2010).
[34] G. Blasse, and B. Grabmaier, “Luminescent materials,” Springer-Verlag, Berlin (1994).
[35] 林麗玉,奈米硫化鋅與硫化鋅鎘螢光體微粒之製備、特性鑑定與發光特性研究, 國立交通大學應用化學研究所碩士論文 (2000).
[36] A. H. Kitai, “Visible luminescence-Solid state materials &applications,” Chapman&Hall: London (1992).
[37] R. A. Swalin, “Thermodynamics of Solids,” John Wiley & Sons, 335 (1972).
[38] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, and L.Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Althin films,” Materials Science and Engineering: B, 52, 59-62 (1998).
[39] R. C. Ropp, “Luminescence and solid state.,” Elsevier Science Publishers, B. V. The Netherlands (1991).
[40] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技 (2005).
[41] S. H. M. Z. Pan, A. Loper, V. King, B. H. Long and W. E. Collins, Applied Physics Letters, 77, 4688-92 (1995).
[42] 曹正樸,基本材料科學,台灣商務印書館股份有限公司,台北,民64。
[43] E. F. Schubert, “LIGHT-EMITTING DIODES.” New York: Cambridge University (2006).
[44] 林蘇逸,高演色性白光發光二極體之研究,國立臺灣大學電機資訊學院光電工程學研究所碩士論文 (2007).
[45] I. Ashdown, “Radiosity: A Programmer's Perspective” John Wiley & Sons, 14-27 (2002).
[46] S. Geller and M. A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets,” Acta crystallogr, 10, 239 (1957).
[47] J. E. Geusic and L. G. V. Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Applied Physics Letters, 4, 182 (1964).
[48] R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited bsorption loss for Ce in YAG and implications for tunable 5d-4f earth lasers,” Applied Physics Letters, 33, 410-412 (1978).
[49] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties”, Materials Science and Engineering R, 71, 1–34 (2010).
[50] R. C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York(1993).
[51] M. Medraj, R. Hammond, M. A. Parvez , R. A. L. Drew, and W. T. Thompson, “High temperature neutron diffraction study of the Al2O3–Y2O3 system”, Journal of the European Ceramic Society, 26, 3515–3524 (2006).
[52] S. Geller, “Crystal chemistry of the garnets,” Z. Kristallogr, 125, 1 (1967).
[53] 余昭蓉,摻加稀土元素鋁酸釔螢光體之合成與特性鑑定,交通大學應用化學研究所碩士論文 (1997).
[54] Y. X. Pan, M. M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Journal of Physics and Chemistry of Solids, 65, 845–850 (2004).
[55] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” Moldavian Journal of the Physical Sciences, 4, 347-356 (2005).
[56] L. Ma, J. G. Hu, G. J. Wan, and X. J. Hu, “Effect of Flux on YAG:Ce Phosphors Prepared by Solid-state Reactions,” Chinese Journal of Chemistry, 27, 348–352 (2006).
[57] A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting,” Chemistry of Materials, 18, 3314-3322 (2006).
[58] C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, “Preparation of Cerium-Activated GAG Phosphor Powders Influence of Co-doping on Crystallinity and Luminescent Properties,” Journal of The Electrochemical Society, 154, J326-J329 (2007).
[59] C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects,” Journal of The Electrochemical Society, 155, B517-B520 (2008).
[60] A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+–N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors,” Chemistry of Materials, 20, 6277-6283 (2008).
[61] M. Sopicka-Lizer, D. Michalik, J. Plewa, T. Juestel, H. Winkler, and T.Pawlik, “The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor,” Journal of The European Ceramic Society, 32, 1383–1387 (2012).
[62] X. J. Wang, G. H. Zhoub, H. L. Zhangb, H. L. Li, Z. J. Zhanga, and Z. Sun, “Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes,” Journal of Alloys and Compounds, 519, 149–155 (2012).
[63] A. Katelnikovas , H. Bettentrup , D. Uhlich , S. Sakirzanovas , T.J¨ ustel, and A.Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” Journal of Luminescence, 129, 1356–1361 (2009).
[64] A. Katelnikovas, T. Bareika, P. Vitta, T. Justel, H. Winkler, A. Kareiva, A. Zukauskas, and G. Tamulaitis, “Y3-xMg2AlSi2O12:Ce3+x phosphors – prospective for warm-white light emitting diodes,” Optical Materials, 32, 1261–1265 (2010).
[65] A. Katelnikovas, H. Winkler, A. Kareiva, T. Justel, “Synthesis and optical properties of green to orange tunable garnet phosphors for pcLEDs,” Optical Materials, 33, 992–995 (2011).
[66] M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, “Luminescence Characteristics of Y3Al5−2y(Mg,Si)yO12:Ce Phosphor Prepared by Spray Pyrolysis,” Journal of The Electrochemical Society, 157, H1135-H1139 (2010).
[67] M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, “Luminescence Comparison and Enhancement of Ce-doped Yttrium Aluminum Garnet Phosphor via Cation Substitutionand Adding Flux,” Journal of The Electrochemical Society, 158, H697-H703 (2011).
[68] S. Q. Xu, L. Z. Sun, Y. Zhang, H. Ju, S. L. Zhao, D. G. Deng, H. P. Wang, and B. L. Wang, “Effect of fluxes on structure and luminescence properties of Y3Al5O12:Ce3+ phosphors,” Journal of Rare Earths, 27 [2] 327-332 (2009).
[69] S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo, and Y. C. Kang, “Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux,” Journal of Alloys and Compounds, 477 [1-2] 776–779 (2009).
[70] Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93−xLnxAl5O12:Ce0.07 (Ln = Gd, La) phosphors for white LEDs application,” Journal of Alloys and Compounds, 498, 199–202 (2010)
[71] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, X.-J. Wang, and J. H. Zhang, “Enriching red emission of Y3Al5O12: Ce3+ by codoping Pr3+ and Cr3+ for improving color rendering of white LEDs,” Optics Express, 18, 25177-25182 (2010).
[72] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, L. G. Zhang, R. X. Zhong, and J. H. Zhanga, “Interionic Energy Transfer in Y3Al5O12:Ce3+, Pr3+, Cr3+ Phosphor,” Journal of The Electrochemical Society, 159, F68-F72 (2012).
[73] L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X.-J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” Journal of Applied Physics, 108, 093515, 10pp (2010).
[74] Z. Q. Jiang, Y. H. Wang, and L. S. Wang, “Enhanced Yellow-to-Orange Emission of Si-Doped Mg3Y2Ge3O12:Ce3+ Garnet Phosphors for Warm White Light-Emitting Diodes,” Journal of The Electrochemical Society, 157, J155-J158 (2010).
[75] M. S. Kishore, N. P. Kumar, R. G. Chandran, and A. A. Setlurb, “Solid Solution Formation and Ce3+ Luminescence in Silicate Garnets,” Electrochemical and Solid-State Letters, 13, J77-J80 (2010).
[76] H. C. Jung, J. Y. Park, G. S. R. Raju, B. C. Choi, J. H. Jeong, and B. K. Moon, “Enhancement of Red Emission in Aluminum Garnet Yellow Phosphors by Sb3+ Substitution for the Octahedral Site,” Journal of The American Ceramic Society, 94, 551–555 (2011).
[77] H. I. Won, H.H. Nersisyan, C.W. Won, and K.H. Lee, “Effect of metal halide fluxes on the microstructure and luminescence of Y3Al5O12:Ce3+ phosphors,” Materials Chemistry and Physics, 129 [3] 955–960 (2011).
[78] B. C. Zhang, R.T. Zhou, D. W. Zhang, and S. Q. Sun, “Effects of Chloride Fluxes on the Luminescence Properties of Y3Al5O12:Ce3+,” Phosphors Chemical Industry and Engineering, 28, 6-10 (2011).
[79] Y.-H. Song, T.-Y. Choi, Karuppanan Senthil, Takaki Masaki, and Dae-Ho Yoon, “Enhancement of photoluminescence properties of green to yellow emitting Y3Al5O12:Ce3+ phosphor by AlN addition for white LED applications,” Materials Letters, 67, 184–186 (2012)
[80] C. Zhaoa, D. H. Zhua, M. X. Maa, T. Hana, and M. J. Tua, “Brownish red emitting YAG:Ce3+,Cu+ phosphors for enhancing the color rendering index of white LEDs,” Journal of Alloys and Compounds, 523, 151– 154 (2012).
[81] P. Wang, D.-J. Wang, J. Song, Z.-Y. Mao, and Q.-F. Lu, “Incorporation of Si–O induced valence state variation of cerium ion and phase evolution in YAG:Ce phosphors for white light emitting diodes,” Journal of Materials Science: Materials in Electronics, 23, 6pp (2012).
[82] Y. T. Nien, T. H. Lu, V. R. Bandi, and I. G. Chen, “Microstructure and Photoluminescence Characterizations of Y3Al5O12:Ce Phosphor Ceramics Sintered with Silica,” Journal of The American Ceramic Society, 95, 1378–1382 (2012).
[83] N. Wei, T. C. Lu, F. Li, W. Zhang, B. Y. Ma, Z. G. Lu, and J. Q. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Applied Physics Letters, 101, 061902 (2012)
[84] Q. Q. Zhu, L. X. Zhong, L. X. Yang, and X. Xuz, “Synthesis of the High Performance YAG:Ce Phosphor by a Sol-Gel Method,” Journal of Solid State Science and Technology, 1, R119-R122 (2012).
[85] J.Y. Parka, H. C. Junga, G. S. R. Rajub, J. H. Jeonga, B. K. Moona, , J. H. Kimc, and Y. K. Lee, “Solvothermal synthesis and luminescence properties of the novel aluminum garnet phosphors for WLED applications,” Current Applied Physics, 13, 441-447 (2013).
[86] Y.S. Lin, and R.S. Liu, Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination,” Journal of Luminescence, 122, 580–582 (2007).
[87] S. Q. Xu, L. Z. Sun, Y. Zhang, H. D. Ju, S. L. Zhao, D. G. Deng, H. P.Wang, B. L.Wang, “Effect of fluxes on structure and luminescence properties of Y3Al5O12:Ce3+ phosphors,” Journal of Rare Earths, 27, 327-329 (2009).
[88] R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+,Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res., 14 [6] 886, 13pp (2012).
[89] K. Ohno, and T. Abe, “Effect of BaF2 on the Synthesis of the Single-Phase Cubic Y3Al5O12:Tb,” J. Electrochem. Soc., 133 [3] 638–643 (1986).
[90] D. Y. Kang, E. Wu, and D. M. Wang, “Modeling white light-emitting diodes with phosphor layers,” Applied Physics Letters, 89, 231102, 3pp (2006).
[91] H. Y. Lin, and S. Y. Chu, “Down-Shifting and Up-Conversion Spectroscopic Properties of (Ca,Mg)3(VO4)2:Yb3+,Eu3+ Phosphors,” Journal of The American Ceramic Society, 95, 3538–3546 (2012).
校內:2018-08-13公開