| 研究生: |
許振軒 Hsu, Cheng_Hsuan |
|---|---|
| 論文名稱: |
應用於WiMAX 無線通訊系統之雙極化陣列天線設計 Dual–Polarization Array Antenna Design for WiMAX Applications |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 雙極化 、陣列天線 、高增益 |
| 外文關鍵詞: | WiMAX |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為探討應用於 WiMAX 無線通訊系統中用戶端設備之雙極化高增益天
線,其主要內容包含不同陣列元件數以及不同類型饋入網路組合之雙極化陣列天線設計、模擬分析與實際量測。在第二章節所提出的天線設計,利用兩種不同天線饋入系統組成,縮小兩組正交極化天線陣列元件排列所需空間,將兩組天線饋入網路分別設置於接地面兩側,以達到最低損耗及最佳輻射效率之目的,其雙極化陣列天線最大輻射增益值皆在8.5 dBi 以上,適合置於室內型用戶端設備(Indoor CPE)中應用。第三章節之天線設計使用印刷電路板製作方式,將其饋入網路與天線陣列元件印刷於相同的平面上,改善陣列天線佈局空間並簡化其饋入網路設計結構,有效率地實現高增益雙極化天線效果。而第四章節所提出的天線設計,承襲前一章節饋入網路設計之優點,將天線輻射導體以及饋入網路架構於空氣介質中,並且降低微帶線高度以減少饋入網路傳輸能量損耗,達成一最佳化高增益輻射效果,其雙極化陣列天線最大輻射增益值皆在15 dBi 以上,適合置於室外型用戶端設備(Outdoor CPE)中應用。
The main objective of this thesis is to discuss the high gain dual-polarization antennas applied on customer premises equipment of WiMAX application. The primary content includes simulation analysis and experiment measurement on the dual polarization array antennas with different number of array elements and different feed network structure. In Chapter 2, we propose the antenna design composed of two different feeding system, which can reduce the space of the orthogonal polarization configuration and place the feed network on both side of the ground to achieve the goal of gaining the lowest loss and the best radiation efficiency; it has the maximum gain above 8.5 dBi and is suitable for the Indoor CPE application. In Chapter 3, we propose a simplest dual-polarization array antenna design adopting the printed circuit board on which, both the antenna array elements and the feed network are printed on the same plane in order to reduce the space of antenna layout and simplify the feed network design. This conception can achieve the high gain dual polarization antenna effectively. In Chapter 4, we carry on the preceding chapter’s antenna design merit, then we subsitute the antenna array and the feed network structure for the air substrate, which can decrease the antenna feed network transmission loss achieving the optimization high gain radiation efficiency. The entire design can meet the maximum gain above 15 dBi and suitable for the Outdoor CPE application.
[1] Worldwide Interoperability for Microwave Access Forum or WiMAX Forum, http://www.wimaxforum.org/
[2] Evolving WiMAX standards and interoperability, http://www.intel.com/technology/wimax/
[3] Ely Levine, Gabi Malamud, Shmuel Shtrikman, and David Treves, “A Study of Microstrip Array Antennas with the Feed Network,” IEEE Trans. Antennas Propagat., vol. 37, No. 4, pp. 426-434, April. 1989.
[4] Qing Song and Xue-Xia Zhang, “A study on wideband gap-coupled microstrip antenna arrays,” IEEE Trans. Antennas Propagat., vol. 43, No. 3, pp. 313-317, March. 1995.
[5] K.L. Wong, F.R. Hsiao, and T.W. Chiou, “Omnidirectional Planar Dipole Array Antenna,” IEEE Trans. Antennas Propagat., vol. 52, No. 2, pp. 624-628, Feb. 2004.
[6] B. G. Duffley, G. A. Morin, M. Mikavica, and Y. M. M. Antar, “A wide-band printed double-sided dipole array,” IEEE Trans. Antennas Propagat., vol. 52, No. 2, pp. 628-631, Feb. 2004.
[7] Yong-Woong Jang, “Experimental implementation of a wideband high-gain 8-array slot antenna for mobile communications,” Microwave and Opt. Technol. Lett., vol. 42, NO. 3, pp. 260-262, Aug. 5, 2004.
[8] Byungje Lee, Gi-Cho Kang, and Sung-Hyun Yang, “Broadband high-efficiency microstrip antenna array with corporate-series-feed” Microwave and Opt. Technol. Lett., vol. 43, NO. 3, pp. 181-183, Nov. 5, 2004.
[9] O. Lafond, M. Himdi, O. Vendier, and Y. Cailloce, “Thick-slot transition and antenna arrays in the Q band,” Microwave and Opt. Technol. Lett., vol 44, No 1, pp. 24-29, Jan. 5, 2005.
[10] O. Lafond, M. Himdi, O. Vendier, and Y. Cailloce, “A wideband low-profile microstrip antenna and array,” Microwave and Opt. Technol. Lett., vol 48, No 4, pp. 729-730, April. 2006.
[11] K.M. Keen, “A planar log-periodic antenna,” IEEE Trans. Antennas Propagat., vol. 22, No. 3, pp. 489-490, May 1974.
[12] Amalendu Patnaik, Dimitrios Anagnostou, Christos G. Christodoulou, James C. Lyke, “Modeling frequency reconfigurable antenna array using neural networks,” Microwave and Opt. Technol. Lett., vol 44, No 4, pp. 351-354, Feb. 2005.
[13] K.M.P. Aghdam, R. Faraji-Dana and J. Rashed-Mohassel, “Compact dual-polarisation planar log-periodic antennas with integrated feed circuit,” IEE Proc.-Microw. Antennas Propagat., vol. 152, No. 5, pp. 359-366, Oct. 2005.
[14] W.R. Deal, N. Kaneda, J. Sor, Y. Qian, T. Itoh, “A New Quasi-Yagi Antenna for Planar Active Antenna Arrays,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 910-918, Jun. 2000.
[15] Jaikrishna Venkatesan, “X-band microstrip Yagi array with dual-offset aperture-coupled feed,” Microwave and Opt. Technol. Lett., vol 48, No 2, pp. 341-344, Feb. 2006.
[16] H.K. Kan, A.M. Abbosh., R.B. Waterhouse, M.E. Bialkowski, “Compact broadband coplanar waveguide-fed curved quasi-Yagi antenna,” IEL Microw. Antennas Propagat., vol. 1, No. 3, pp. 572-574, Jun. 2007.
[17] H.K. Kan, R.B. Waterhouse, A.M. Abbosh, M.E. Bialkowski, “Simple Broadband Planar CPW-Fed Quasi-Yagi Antenna,” IEEE Antenna Wireless Propag. Lett., vol. 6, pp. 18-20, Jun. 2007.
[18] K. L. Wong, H. C. Tang, and T. W. Chiou, “Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots,” IEEE Trans. Antennas Propagat., vol. 50, pp. 188-191, Feb. 2002.
[19] T. W. Chiou, and K. L. Wong, “A Compact Dual-Band Dual-Polarized Patch Antenna for 900/1800-MHz Cellular Systems,” IEEE Trans. Antennas Propagat., vol. 50, pp. 1936-1940, Aug. 2003.
[20] H. Wong, K. L. Lau, and K. M. Luk, “Design of dual-polarized L-probe patch antenna arrays with high isolation,” IEEE Trans. Antennas Propagat., vol. 52, pp. 45-52, Jan. 2004.
[21] H. W. Lai and K. M. Luk, “Dual polarized patch antenna fed by meandering probes,” IEEE Trans. Antennas Propagat., vol. 55, pp. 2625-2627, Sep. 2007.
[22] T. W. Chiou, H. C. Tang, and K. L. Wong, “A dual-polarization wideband circular patch antenna with hybrid feeds,” Microwave and Opt. Technol. Lett., vol. 26, pp. 37-39, July 5, 2000.
[23] K. L. Wong, and T. W. Chiou, “Broad-Band Dual-Polarized Patch Antennas Fed by Capacitively Coupled Feed and Slot-Coupled Feed” IEEE Trans. Antennas Propagat., vol. 50, NO.3, pp. 346-351, March. 2002.
[24] T. W. Chiou, and K. L. Wong, “Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization,” IEEE Trans. Antennas Propagat., vol. 50, pp. 399-401, March 2002.
[25] X. L. Liang, S. S. Zhong, and W. Wang, “Cross-polarization suppression of dual-polarization linear microstrip antenna arrays,” Microwave and Opt. Technol. Lett., vol. 42, pp. 448-451, Sep. 20, 2004.
[26] X. L. Liang, S. S. Zhong, and W. Wang, “Dual-polarized corner-fed patch antenna array with high isolation,” Microwave and Opt. Technol. Lett., vol. 47, pp. 520-522, Sep. 20, 2004.
[27] I. Acimovic, D. A. McNamara, and A. Petosa, ” Dual-Polarized Microstrip Patch Planar Array, ” IEEE Trans. Antennas Propagat., Vol. 56, No. 11, pp.3433-3439, Nov. 2008.
[28] Hang Wong, Ka-Leung Lau, and Kwai-Man Luk, ” Design of Dual-Polarized L-Probe Patch, ” IEEE Trans. Antennas Propagat., Vol. 52, No. 1, pp.45-52, Jan. 2004.
[29] H. W. Lai, T. P. Wong, C. L. Mak, and K. M. Luk, “Wideband dual-polarized antenna array on finite conducting cylinder,” Microwave and Opt. Technol. Lett., vol. 48,NO. 5, pp. 862-866, May. 2006.
[30] K. L. Lau, and K. M. Luk, ” A Wideband Dual-Polarized L-Probe, ” IEEE Trans. Antennas Propagat., Vol. 6, pp.529-532, 2007.
[31] P. S. Hall and C. M. Hall, ”Coplanar Corporate Feed Effects in Microstrip Patch Array Design, ” IEE Proc, Microwave, Antennas and Propagat., Vol. 135, No. 3, pp.180-186, Jun. 1988.