簡易檢索 / 詳目顯示

研究生: 張哲瑋
Chang, Che-Wei
論文名稱: 應用於局部放電檢測之高頻比流器磁飽和改善
Magnetic Saturation Improvement of HFCT for Partial Discharge Sensing
指導教授: 陳建富
Chen, Jian-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 63
中文關鍵詞: 高頻比流器磁飽和局部放電
外文關鍵詞: High frequency current transformer, magnetic saturation, partial discharge
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了一種具低頻補償繞組之高頻比流器,可達到提高高頻比流器能承受的低頻電流規格。 通常,HFCT在幾百kHz到幾MHz的高頻區域具有良好的頻率響應,這也意味著較低的飽和磁通密度。在電力設備的故障中,接地線往往會有低頻大電流,這也特別容易使鐵芯產生磁飽和。因此,消除低頻磁通提升低頻電流規格是此高頻比流器的主要目的。本文通過搭配額外的繞組並使用濾波器作為分流器來引導電流迴路,產生反向磁通量以消除低頻磁通量,以避免鐵芯飽和的可能性,而且雜訊也能被抑制在很小的範圍。本文研製的高頻比流器的頻寬為1 MHz至30 MHz。

    In this thesis, for improving the magnetic saturation of HFCT, a low frequency compensation winding is proposed. Normally, HFCT has good frequency response at high frequency region from several hundred kHz to several MHz, it implies low magnetic flux density endurance. But in power equipment’s fault, the groundings wire there used to have low frequency current which is especially easy to make core saturation. Therefore, to eliminate the low frequency magnetic flux is the main purpose for the HFCT. By embed an extra winding and use the filters as the current divider to guide the current loop, reverse magnetic flux is generated to eliminate the low frequency magnetic flux to avoid the possibility of saturation of the iron core. Also, the noise is suppressed in a small value. The bandwidth of the implemented HFCT is 1 MHz to 30 MHz.

    摘 要 IV ABSTRACT V 誌謝 VI CONTENTS VII LIST OF FIGURE IX LIST OF TABLES XIII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Organization 4 CHAPTER 2 PARTIAL DISCHARGE 5 2.1 Types of Partial Discharge Characteristics [12]-[16] 5 2.1.1 Corona Discharge 7 2.1.2 Surface Discharge 7 2.1.3 Internal Discharge 8 2.1.4 Electrical Tree 8 2.2 Partial Discharge Terms and Definitions 10 2.3 Comparison of Detection Method of Partial Discharge 12 CHAPTER 3 HIGH FREQUENCY CURRENT TRANSFORMER AND FILTER DESIGN 14 3.1 Current Transformer 14 3.1.1 Hysteresis Curves in Magnetic Materials 16 3.1.2 Current Transformer Review 19 3.2 Topology of the Proposed HFCT 23 3.3 High Frequency Current Transformer Parameter Design 23 3.3.1 Core Selection 24 3.3.2 Winding Selection 26 3.4 Filter Parameter Design 29 CHAPTER 4 EXPERIMENTAL SCHEME AND RESULTS ANALYSIS 38 4.1 Characteristic of Proposed HFCT 38 4.2 Experimental Scheme 43 4.3 Results Analysis 45 4.3.1 Signal Analysis 45 4.3.2 Overcurrent Condition 48 4.3.3 Corona Experiment 56 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 59 5.1 Conclusions 59 5.2 Future Works 60 REFERENCES 61

    [1] A. Bagheri, M. Allahbakhshi, D. Behi, and M. Tajdinian, "Utilizing Rogowski coil for saturation detection and compensation in iron core current transformer." pp. 1066-1071.
    [2] A. Bagheri, M. Allahbakhshi, D. Behi, and M. Tajdinian, "Utilizing Rogowski coil for saturation detection and compensation in iron core current transformer." pp. 1066-1071.
    [3] P. K. Gangadharan, T. S. Sidhu, and G. J. Finlayson, “Current Transformer Dimensioning for Numerical Protection Relays,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 108-115, 2007.
    [4] B. A. Siddiqui, P. Pakonen, and P. Verho, “Novel inductive sensor solutions for on-line partial discharge and power quality monitoring,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 1, pp. 209-216, 2017.
    [5] F. B. Ajaei, M. Sanaye-Pasand, M. Davarpanah, A. Rezaei-Zare, and R. Iravani, “Compensation of the Current-Transformer Saturation Effects for Digital Relays,” IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2531-2540, 2011.
    [6] P. Jiuping, V. Khoi, and H. Yi, “An efficient compensation algorithm for current transformer saturation effects,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1623-1628, 2004.
    [7] G. Lin, Q. Song, D. Zhang, F. Pan, and L. Wang, "A hybrid method for current transformer saturation detection and compensation in smart grid." pp. 369-374.
    [8] W. Rebizant, and D. Bejmert, “Current-Transformer Saturation Detection With Genetically Optimized Neural Networks,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 820-827, 2007.
    [9] M. Stanbury, and Z. Djekic, “The Impact of Current-Transformer Saturation on Transformer Differential Protection,” IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1278-1287, 2015.
    [10] I. Shim, J. J. Soraghan, and W. H. Siew, “Detection of PD utilizing digital signal processing methods. Part 3: Open-loop noise reduction,” IEEE Electrical Insulation Magazine, vol. 17, no. 1, pp. 6-13, 2001.
    [11] Hioki, “Current sensor measurement principles”, https://www.hioki.com
    [12] “High-Voltage Test Techniques-Partial Discharge Measurements”, IEC 60270, 2015.
    [13] Gulski, ‘Digital analysis of partial discharges’, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2, no. 5, pp. 822-837,1995.
    [14] Kreuger, F.H., Gulski, E., and Krivda, ‘Classification of partial discharges’, IEEE Transactions on Electrical Insulation, vol.28, no. 6, pp. 917-931,1993.
    [15] 鄭凱中,「電力電纜局部放電檢測與圖譜辨識之研究」,國立成功大學電機工程學系碩士論文,2008。
    [16] 陳柏宏,「變壓器局部放電信號檢測研究」,聖約翰技術學院研究報告,2004。
    [17] A. Reid, M. Judd, B. Stewart, and R. Fouracre, "Comparing IEC60270 and RF partial discharge patterns." pp. 89-92.
    [18] Y. Tian, P. L. Lewin, and A. E. Davies, “Comparison of on-line partial discharge detection methods for HV cable joints,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 4, pp. 604-615, 2002.
    [19] “IEEE Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment,” IEEE Std 400.3-2006, pp. 1-44, 2007.
    [20] F. Álvarez, F. Garnacho, J. Ortego, and M. Ángel Sánchez-Urán, Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment, 2015.
    [21] W. Hauschild, and E. Lemke, "Basics of High-Voltage Test Techniques," High-Voltage Test and Measuring Techniques, pp. 17-80, 2014.
    [22] C. W. T. McLyman, Transformer and inductor design handbook: CRC press, 2016.
    [23] L. J. Powell, “Current transformer burden and saturation,” IEEE Transactions on Industry Applications, no. 3, pp. 294-303, 1979.
    [24] M. Shafiq, L. Kutt, M. Lehtonen, T. Nieminen, and M. Hashmi, “Parameters Identification and Modeling of High-Frequency Current Transducer for Partial Discharge Measurements,” IEEE Sensors Journal, vol. 13, no. 3, pp. 1081-1091, 2013.
    [25] Y. Shibuya, S. Matsumoto, M. Tanaka, H. Muto, and Y. Kaneda, “Electromagnetic waves from partial discharges and their detection using patch antenna,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 3, pp. 862-871, 2010.
    [26] S. Tumanski, “Induction coil sensors—a review,” Measurement Science and Technology, vol. 18, no. 3, pp. R31-R46, 2007.

    [27] G. Bianchi, and R. Sorrentino, Electronic filter simulation & design: McGraw-Hill New York, 2007.pp.17-20
    [28] S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, no. 6, pp. 536-541, 1930.
    [29] A. B. Williams, and F. J. Taylors (1988). Electronic Filter Design Handbook. New York: McGraw-Hill. ISBN 0-07-070434-1.
    [30] A. S. Sedra, and P. O. Brackett, Filter theory and design: active and passive: Matrix Pub, 1978.
    [31] C. Zachariades, R. Shuttleworth, R. Giussani, and R. MacKinlay, “Optimization of a High-Frequency Current Transformer Sensor for Partial Discharge Detection Using Finite-Element Analysis,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7526-7533, 2016.
    [32] R. W. Daniels (1974). Approximation Methods for Electronic Filter Design. New York: McGraw-Hill. ISBN 0-07-015308-6.
    [33] 王世山、崔永生、謝少軍,「鐵氧體環形電感器寄生電容的提取」,電工技術學報, vol. 24, no. 4, pp. 22-29, 2009.
    [34] 森 榮二;LC濾波器設計與製作,北京: 科學出版社,2005。
    [35] D.C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp.3490 - 3492, 1993

    下載圖示 校內:2023-09-30公開
    校外:2023-09-30公開
    QR CODE