簡易檢索 / 詳目顯示

研究生: 劉俊男
Liu, Jiun-Nan
論文名稱: 基於慣性感測器之手寫數字軌跡重建演算法之研發
Development of Inertial Sensor Based Handwritten Digit Trajectory Reconstruction Algorithm
指導教授: 王振興
Wang, Jeen-SHin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 70
中文關鍵詞: 慣性感測軌跡重建
外文關鍵詞: inertial sensing, trajectory reconstruction
相關次數: 點閱:84下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一IMUPEN與一軌跡重建演算法。此IMUPEN包含了三軸加速度計,陀螺儀,微控制晶片,無線傳輸模組;而此軌跡重建演算法包含兩個部分:姿態估測程序以及位置估測程序。結合IMUPEN與此軌跡重建演算法,使用者能隨時地重建其空間中的三維動作軌跡,並藉此提供使用者遠離電腦時一個便利的人機互動方式。IMUPEN以無線的方式將其內建的慣性感測器原始量測值傳送到電腦端,進行軌跡重建演算;進行軌跡重建演算前,電腦端所接受之原始訊號先經過訊號前處理,訊號前處理包括了感測器校正和低通濾波。軌跡重建演算法中之姿態估測程序取用了經前處理之加速度及角速度,並利用兩種慣性訊號來計算IMUPEN之姿態。為了提高姿態估測準確性,本論文發展了一卡爾曼濾波器及一切換機制來提高姿態估測之準確性。軌跡重建演算法中之位置估測程序取用了經前處理之加速度訊號以及姿態估測程序所計算出的姿態資訊,並利用其來估測IMUPEN之位置。為了提高位置估測之準確性,本論文開發了一多軸動態開關來降低兩次積分之累積誤差。本軌跡重建演算法已透過動作軌跡重建及手寫數字辨識來驗證其實用性及準確度。

    This thesis presents an inertial-measurement-based pen (IMUPEN) and a trajectory reconstruction algorithm. The trajectory reconstruction algorithm is capable of providing reconstructed trajectories on demand with the IMUPEN, composed of a triaxial accelerometer, two gyroscopes, a microcontroller, and an RF transmitter. The IMUPEN alone with the trajectory reconstruction algorithm can be used for off-desktop human computer interaction (HCI). The trajectory reconstruction algorithm comprises two constituent procedures: an attitude estimation procedure and a position estimation procedure. The signals collected from the inertial sensors are preprocessed before the trajectory reconstruction algorithm uses them. The signal preprocessing procedure includes a sensor calibration step and a low-pass filtering step. The attitude estimation employs both the preprocessed accelerations and angular velocities to produce attitude estimates. A Kalman filter and a switching mechanism have been developed and integrated into the attitude estimation procedure to make estimation more accurate. The position estimation procedure produces position estimates using the preprocessed accelerations and the attitude estimates. A multi-axes dynamic switch (MAD) has been developed to reduce position drift from double integration of accelerations. The accuracy of reconstructed trajectories is satisfactory for short-term motion trajectory reconstruction and handwritten digit recognition.

    CHINESE ABSTRACT i ABSTRACT ii LIST OF TABLES viii LIST OF FIGURES ix 1 Introduction 1-1 1.1 Motivation 1-1 1.2 Literature Survey 1-3 1.3 Contributions of this Thesis 1-7 1.4 Organization of the Thesis 1-8 2 IMUPEN System and Signal Preprocessing 2-1 2.1 IMUPEN System 2-1 2.2 Signal Preprocessing 2-3 2.2.1 Calibration of IMU 2-3 2.2.2 Low-pass Filtering 2-6 3 Trajectory Reconstruction Algorithm 3-1 3.1 Algorithm Overview 3-1 3.2 Attitude Estimation 3-4 3.2.1 Coordinate System 3-7 3.2.2 Accelerometer Based Attitude Estimation 3-9 3.2.3 Gyroscope Based Attitude Estimation 3-10 3.2.4 Switching Mechanism 3-14 3.2.5 Kalman Filter Based Attitude Estimation 3-15 3.3 Position Estimation 3-23 3.3.1 Coordinate Transformation and Gravity Compensation 3-24 3.3.2 Multi-Axis Dynamic Switch 3-25 4 Experimental Results 4-1 4.1 Motion Trajectory Reconstruction 4-2 4.2 Handwritten Digit Recognition 4-6 4.2.1 Handwritten Digit Recognition Comparison between Tablet Digitizer Pen and the IMUPEN 4-6 4.2.2 Handwritten Digit Recognition via the IMUPEN 4-9 5 Conclusions and Future Work 5-1 5.1 Conclusions 5-1 5.2 Recommendations for Future Work 5-3 References 6-1

    [1] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Nonlinear regression model of a low-g MEMS accelerometer,” IEEE Sensors Journal, vol. 7, no. 1, pp. 81-88, 2007.
    [2] W. C. Bang, W. Chang, K. H. Kang, E. S. Choi, A. Potanin, and D. Y. Kim, “Self-contained spatial input device for wearable computers,” in Proc. IEEE Int’l Conf. Wearable Computers, 2003, pp. 26-34.
    [3] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York, NY: John Wiley and Sons, 2001.
    [4] N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors Journal, vol. 1, no. 4, pp. 332-339, 2001.
    [5] R. G. Brown, P. Y. C. Hwang, and R. G. Brown, Introduction to Random Signals and Applied Kalman Filtering. New York, NY: John Wiley and Sons, 1985.
    [6] E. S. Choi, W. C. Bang, S. J. Cho, J. Yang, D. Y. Kim, and S. R. Kim, “Beatbox music phone: gesture-based interactive mobile phone using a tri-axis accelerometer,” in IEEE Int’l Conf. Industrial Technology, 2005, pp. 97-102.
    [7] J. L. Crassidis, “Sigma-point Kalman filtering for integrated GPS and inertial navigation,” IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 2, pp. 750-756, 2006.
    [8] W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science and Technology, vol. 19, no. 8, pp. 1-11, 2008.
    [9] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38-46, 2005.
    [10] S. Godha and G. Lachapelle, “Foot mounted inertial system for pedestrian navigation,” Measurement Science and Technology, vol. 19, no. 7, pp. 075202, 2008.
    [11] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB. New York, NY: John Wiley and Sons, 2001.
    [12] T. Harada, T. Mori, and T. Sato, “Development of a tiny orientation estimation device to operate under motion and magnetic disturbance,” Int’l Journal of Robotics Research, vol. 26, no. 6, pp. 547-559, 2007.
    [13] AiLive Inc., “Livemove white paper,” Technical report, AiLive Inc., 2006.
    [14] H. Junker, O. Amft, P. Lukowicz, and G. Troster, “Gesture spotting with body-worn inertial sensors to detect user activities,” Pattern Recognition, vol. 41, no. 6, pp. 2010-2024, 2008.
    [15] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.
    [16] M. G. Liberty, “Free space pointing devices with tilt compensation and improved usability,” U.S. Patent, 2005.
    [17] J. C. Lötters, J. Schipper, P. H. Veltink, W. Olthius, and P. Bergveld, “Procedure for in-use calibration of triaxial accelerometers in medical applications,” Sensors and Actuators A: Physical, vol. 68, no. 1-3, pp. 221-228, 1998.
    [18] H. J. Luinge and P. H. Veltink, “Measuring orientation of human body segments using miniature gyroscopes and accelerometers,” Medical and Biological Engineering and Computing, vol. 43, no. 2, pp. 273-282, 2005.
    [19] R. Van Der Merwe, “Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models,” Ph.D dissertation, University of Stellenbosch, 2004.
    [20] N. Metni, J. M. Pflimlin, T. Hamel, and P. Soueres, “Attitude and gyro bias estimation for a VTOL UAV,” Control Engineering Practice, vol. 14, no. 12, pp. 1511-1520, 2006.
    [21] P. G. Savage, “Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms,” Journal of Guidance Control and Dynamics, vol. 21, no. 1, pp. 19-28, 1998.
    [22] P. G. Savage, “Strapdown inertial navigation integration algorithm design part 2: Velocity and position algorithms,” Journal of Guidance Control and Dynamics, vol. 21, no. 2, pp. 208-221, 1998.
    [23] H. Rehbinder and X. Hu, “Drift-free attitude estimation for accelerated rigid bodies,” Automatica, vol. 40, no. 4, pp. 653-659, 2004.
    [24] D. Roetenberg, H. J. Luinge, C. T. M. Baten, and P. H. Veltink, “Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation,” IEEE Trans. Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 395-405, 2005.
    [25] A. M. Sabatini, S. Martiri, A. della Liberta, and I. Pisa, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Trans. Biomedical Engineering, vol. 53, no. 7, pp. 1346-1356, 2006.
    [26] E. H. Shin and N. El-Sheimy, “Unscented kalman filter and attitude errors of low-cost inertial navigation systems,” Navigation, vol. 54, no. 1, pp. 1-9, 2007.
    [27] M. D. Shuster, “Approximate algorithms for fast optimal attitude computation,” in AIAA Guidance and Control Conference, 1978, pp. 88-95.
    [28] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector observations,” Journal of Guidance and Control, vol. 4, no. 1, pp. 70-77, 1981.
    [29] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology. Peter Peregrinus Ltd, 2004.
    [30] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000, pp. 153-158.
    [31] G. Welch and G. Bishop, “An introduction to the Kalman filter,” TR-95-041, Dept. of Computer Science, Univ. of North Carolina at Chapel Hill.
    [32] M. S. Weinberg, C. Wall, J. Robertsson, E. O’Neil, K. Sienko, and R. Fields, “Tilt determination in MEMS inertial vestibular prosthesis,” Journal of Biomechanical Engineering, vol. 128, no. 6, pp. 943-956, 2006.
    [33] J. Yang, E. S. Choi, W. Chang, W. C. Bang, S. J. Cho, J. K. Oh, J. K. Cho, and D. Y. Kim, “A novel hand gesture input device based on inertial sensing technique,” in Annual Conf. of IEEE Industrial Eelctronics Society, vol. 3, 2004, pp. 2786-279.
    [34] N. Yang, W. F. Tian, Z. H. Jin, and C. B. Zhang, “Particle filter for sensor fusion in a land vehicle navigation system,” Measurement Science and Technology, vol. 16, no. 3, pp. 677-681, 2005.
    [35] J. Yang, D. Kim, and W. Bang, “Trajectory estimation apparatus, method, and medium for estimating two-dimensional trajectory of gesture,” US Patent, 2007.
    [36] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1216-1227, 2006.
    [37] S. Zhou, Z. Dong, W. J. Li, and C. P. Kwong, “Hand-written character recognition using MEMS motion sensing technology,” in IEEE/ASME Int’l Conf. Advanced Intelligent Mechatronics, 2008, pp. 1418-1423.
    [38] H. Zhou, T. Stone, H. Hu, and N. Harris, “Use of multiple wearable inertial sensors in upper limb motion tracking,” Medical Engineering and Physics, vol. 30, no. 1, pp. 123-133, 2008.
    [39] http://www.newport.com/

    下載圖示 校內:2019-07-30公開
    校外:2019-07-30公開
    QR CODE