簡易檢索 / 詳目顯示

研究生: 李昆蔚
Lee, Kun-Wei
論文名稱: 電動載具用編織型非接觸式感應充電平台之研製
Study on Weaving-Type Contactless Inductive Charging Platform for Electric Vehicles
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 非接觸編織型充電平台
外文關鍵詞: contactless, weaving-type, charging platform
相關次數: 點閱:84下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究編織型非接觸式感應耦合結構,俾將其應用於感應充電平台。文中針對不同耦合結構進行分析與模擬,並研製適用於本系統之編織型感應耦合結構,藉以建置一長、寬皆為28公分之非接觸式感應充電平台。所提編織結構可提供均勻磁場,改善一般耦合結構初、次級側需對位精準之問題。系統使用鎖相迴路即時改變開關操作頻率,用以避免諧振頻率偏移之問題,並以降壓變壓器產生低壓大電流饋入初級側耦合結構,使充電平台維持最大電能輸出。此外,次級側耦合結構採用E型鐵芯作為誘導磁通之媒介,以提高電能傳輸效率。綜合以上,本論文實現電動載具用編織型感應充電平台系統。經實驗驗證,編織型非接觸式感應耦合結構於氣隙9公分時,感應充電平台以2A之電流對磷酸鐵鋰電池進行充電,充電所需時間為58分鐘,電能傳輸效率最高為45%。

    The purpose of the thesis is to study a weaving-type contactless inductive power transmission system with electromagnetic coupling technique. In this thesis, a weaving-type inductive platform which consists of a winding coil is proposed for improving the uniform magnetic field distribution over the charging surface. Effectiveness for stabilizing the amount of the transmitted power against a load displacement is the features of weaving-type coils. The car receives the magnetic flux radiating from the primary coils, which serves as the power source for the car. Finally, a design procedure is proposed and verified by the experiments. A weaving-type contactless inductive charging platform whose length and width is both 28 centimeters is implemented. Besides, the total charging time is 58 minutes and an efficiency of about 45% has been achieved for the coupled structures through 9 centimeters air gap.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 1 1-3 研究目的與方法 5 1-4 論文大綱 7 第二章 非接觸感應耦合原理 8 2-1 前言 8 2-2 感應線圈基本原理 8 2-3 磁性材料 9 2-4 感應耦合結構分析與比較 12 2-5 感應結構之非理想性 17 2-5-1 集膚效應 18 2-5-2 近接效應 19 第三章 非接觸式感應充電平台 20 3-1 前言 20 3-2 非接觸式感應充電平台整體架構規劃 20 3-3 驅動電路分析 21 3-4 非接觸式感應電能傳輸系統分析 22 3-5 非接觸式感應充電平台繞組 23 3-6 全橋變流器分析 25 3-7 整流濾波與充電電路 29 3-8 鎖相電路分析 30 3-9 電池基本特性與充電策略 31 3-9-1 磷酸鐵鋰電池 31 3-9-2 電池充電策略 32 第四章 非接觸式感應充電平台硬體製作 35 4-1 前言 35 4-2 感應充電平台電路架構 35 4-3 感應充電平台初級側電路 36 4-3-1 全橋變流器製作 36 4-3-2 降壓變壓器製作 37 4-3-3 鎖相電路製作 38 4-4 感應充電平台耦合結構繞製 40 4-5 感應充電平台次級側電路 44 4-5-1 選擇性電容切換電路製作 45 4-5-2 整流濾波電路 45 4-5-3 電壓調節電路製作 46 4-5-4 磷酸鐵鋰電池充電電路製作 47 4-6 非接觸式感應充電平台設計流程 48 第五章 感應充電平台模擬與實驗結果 51 5-1 前言 51 5-2 感應充電平台硬體電路製作 51 5-3 Ispice電路模擬 52 5-4 實驗測量結果 55 第六章 結論與未來研究方向 61 6-1 結論 61 6-2 未來研究方向 62 參考文獻 63

    [1] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [2] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no.1, pp. 140-147, 2004.
    [3] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, 1999.
    [4] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [5] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC, 2002, pp. 579-584.
    [6] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IEEE IAS, 2002, pp. 1586-1591.
    [7] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” in Proc. IEEE APEC, 2000, pp. 769-773.
    [8] R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high frequency, high power transformers, ” in Proc. IEEE APEC, 1999, pp. 14-18.
    [9] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON, 1997, vol. 3, pp. 792-797.
    [10] J. Hayes, J. Hall, M. Eqan, and J. Murphy, “Full-bridre, series-resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1913-1918.
    [11] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. IEEE ACEMS, 2003, pp. 253-256.
    [12] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no.1 pp.1-7, 2008.
    [13] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
    [14] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA, 2007, pp.68-73.
    [15] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [16] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [17] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. IEEE PowerCon., 2000, vol. 1, pp. 79-84.
    [18] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
    [19] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmis¬sion system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [20] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Construction of non-contacting power feeding system to underwater vehicle utilizing electromag¬netic induction,” in Proc. IEEE OCEANS, 2005, vol. 1, pp. 709-712.
    [21] T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, K. Hizu, H. Kawaguchi, T. Sakurai, and T. Someya, “A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors,” in Proc. IEEE IEDM, 2006, pp. 1-4.
    [22] X. Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [23] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” in Proc. IEEE INTERMAG, 1997, pp. 4203-4205.
    [24] S. I. Adachi, F. Sato, and S. Kikuchi, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583-3585, 1999.
    [25] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5037, 1996.
    [26] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “Consideration on cordless power station- contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
    [27] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, and J. Kawase, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [28] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “A new meander type contactless power transmission system-active excitation with a characteristics of coil shape,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2069-2071, 1998.
    [29] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE OCEANS, 2004, vol. 4, pp. 2341-2345.
    [30] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IEEE IPEC, 2005, pp. 1133-1136.
    [31] C. S. Wang, O. H. Stielau, and A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [32] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, pp. 797-801.
    [33] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
    [34] L. L. Hao, H. Aiguo, and G. A. Covic, “Development of a discrete energy injection inverter for contactless power transfer,” in Proc. IEEE ICIEA, 2008, pp. 1757-1761.
    [35] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON, 2001, pp. 1049-1054.
    [36] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys., vol. 323, no. 1, pp. 34-48, 2008.
    [37] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly- radiative wireless energy transfer: an EIT-like approach,” Ann. Phys., vol. 324, no. 8, pp. 1783-1795, 2009.
    [38] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, 2009.
    [39] A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, pp. 1-3, 2010.
    [40] M. Soma, D. C. Galbraith, and R. L. White, “Radio-frequency coils in implantable devices: misalignment analysis and design procedure,” IEEE Trans. Biomed. Eng., vol. 34, no. 4, pp. 276-282, 1987.
    [41] K. W. Klontz, “Skin and proximity effect in multi-layer transformer windings of finite thickness,” in Proc. IEEE IAS, 1995, vol. 1, pp. 851-858.
    [42] J. M. Barnard, J. D. V. Wyk, and J. A. Ferreira, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON, 1996, pp. 711-714.
    [43] X. Liu, P. W. Chan, and S. Y. R. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC‚ 2005, vol.3, pp. 1927-1932.
    [44] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contact¬less battery charging platform for portable consumer electronic equip¬ment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [45] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [46] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
    [47] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
    [48] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [49] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯繞製式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [50] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。

    下載圖示 校內:2016-08-17公開
    校外:2016-08-17公開
    QR CODE