簡易檢索 / 詳目顯示

研究生: 張詠翔
Chang, Yung-Hsiang
論文名稱: 添加有機駢苯衍生物於前驅液並以溶劑輔助法製成鈣鈦礦太陽能電池之研究
Fabrication of Perovskite Solar Cells Doped with PTCDI in Precursor Using The Solvent Engineering Method
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 有機駢苯衍生物一步驟旋塗溶劑工程法物理摻雜鈣鈦礦太陽能電池
外文關鍵詞: PTCDI, one-step spin coating, solvent engineering, physically doped, perovskite solar cells
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是利用物理摻雜的方式,將有機駢苯小分子摻入鈣鈦礦前驅液,並以一步驟旋塗法製成鈣鈦礦太陽能電池,期望藉由此有機駢苯小分子的能量轉移來提升鈣鈦礦的光電流,進而提升光電轉換效率。本實驗主要分為兩個部分,第一部分主要是在以溶劑工程法一步驟旋塗製成鈣鈦礦太陽能電池的研究與探討,透過不同的延遲時間(無滴入、3秒、5秒、7秒)滴入氯苯來探討鈣鈦礦薄膜品質,藉由紫外光-可見光光譜吸收(UV-Vis)分析、X光繞射(XRD)分析、掃描式電子顯微鏡(SEM)分析,並得到延遲時間為5秒時所製作出來的鈣鈦礦薄膜具有最優異的性質,並且此薄膜能擁有最佳的太陽能電池元件表現。而第二部分是摻雜有機駢苯衍生物(PTCDI-C7與PTCDI-C8)於鈣鈦礦前驅液,以第一部分之最佳參數及方法製成鈣鈦礦太陽能電池,並以太陽能模擬器量測其光電轉換效率,測得摻雜PTCDI-C7與PTCDI-C8可以使鈣鈦礦的效率分別增加14 %及33 %,最後根據外部量子效率量測儀測結果,證實鈣鈦礦太陽電池效率的增加主要是來自光電流的上升。

    In this study, we physically doped the PTCDI molecules in the perovskite precursor, and fabricated the perovskite solar cells with one-step spin coating and the solvent engineering method. We expected that the PTCDI molecules could have an energy transfer effect in order to increase the current of the perovskite solar cells. There are two parts in this study. In the first, we studied fabricating the perovskite solar cells with one-step spin coating and the solvent engineering method. We dripped the chlorobenzene with different delay times (0s, 3s, 5s, 7s) during the perovskite precursor spinning. Through the UV-Vis spectrum, XRD, SEM, we found the best delay time of the perovskite thin films was 5 seconds. In the second part, we doped the PTCDI-C7 and PTCDI-C8 into the perovskite precursor, and fabricated the perovskite solar cells with the best parameters and method from the first part. The doped devices showed 14 % and 33 % increases in efficiency for PTCDI-C7 and PTCDI-C8 respectively. It was proved that the increasing efficiency was due to the increase in the photovoltaic current based on the measurement of external quantum efficiency (EQE).

    摘要 II 誌謝 IX 總目錄 X 圖目錄 XIV 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-1-1 再生能源的重要性 1 1-1-2太陽能電池種類及發展介紹 2 1-1-3鈣鈦礦太陽能電池的優勢 5 1-2研究動機與目的 7 第二章 理論基礎與文獻回顧 9 2-1 有機半導體 9 2-2鈣鈦礦電池工作原理 11 2-2-1 無機太陽能電池 11 2-2-2 有機太陽能電池工作原理 12 2-3 鈣鈦礦太陽能電池元件結構 16 2-3-1 多孔支架結構(mesoporous structure) 16 2-3-2 平面異質接面結構 (Planar heterojunction structure) 17 2-4 鈣鈦礦薄膜成膜機制與方法 19 2-4-1 一步驟旋轉塗佈法 19 2-4-2 連續沉澱法 20 2-4-3 雙源蒸鍍法 21 2-4-4 氣相輔助溶液法 22 2-4-5 溶劑工程法 23 2-5 元件參數 25 2-5-1 開路電壓(Open circuit voltage ,Voc) 25 2-5-2 短路電流(Short circuit current ,Jsc) 26 2-5-3 填充因子(Fill factor ,FF) 26 2-5-4光電轉換效率(Power conversion efficiency , ηc) 27 第三章 實驗製備及分析儀器 30 3-1 實驗藥品及材料 30 3-1-1 元件材料 30 3-1-2有機溶劑及耗材 31 3-1-3實驗及分析量測儀器 32 3-2材料鑑定與分析原理 33 3-3添加物材料的挑選 37 3-4鈣鈦礦太陽能電池(Perovskite solar cell)元件製備與量測 39 第四章 結果與討論 46 4-1 一步驟旋塗法製成 46 4-1-1 掃描式電子顯微鏡 (SEM) 46 4-1-2 X光繞射儀 (XRD) 48 4-1-3 紫外光-可見光光譜儀 (UV-Vis) 49 4-1-4 元件效率 50 4-3 添加PTCDI有機分子的影響 52 4-2-1 PTCDI-C7與PTCDI-C8之性質 52 4-2-2 紫外光-可見光光譜儀 (UV-Vis) 55 4-2-3 光致發光光譜儀 (PL) 57 4-2-4 掃描式電子顯微鏡 (SEM) 59 4-2-5 X光繞射儀 (XRD) 60 4-2-6 外部量子效應 (EQE) 61 4-2-7 元件效率 62 第五章 結論 64 參考文獻 66

    [1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, " A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys, vol. 25, p. 676, 1954.
    [2] S. Gunes, H. Neugebauer, and N. S. Sariciftci, "Conjugated Polymer-Based Organic Solar Cells," Chem. Rev., vol. 107, p. 1324, 2007.
    [3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [4] W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
    [5] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, "Organic-based photovoltaics toward low-cost power generation," MRS Bull., vol. 30, p. 10, 2005.
    [6] X. Bao et al., "High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions," Journal of Materials Chemistry A, vol. 3, no. 38, pp. 19294-19298, 2015.
    [7] Y. Li et al., "Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure," Small, vol. 12, no. 35, pp. 4902-4908, 2016.
    [8] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, "Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications," Journal of Photonics for Energy, vol. 6, no. 2, pp. 022001-022001, 2016.
    [9] K. W. Böer, "The Photovoltaic Effect," in Survey of Semiconductor Physics: Volume II Barriers, Junctions, Surfaces, and DevicesDordrecht: Springer Netherlands, 1992, pp. 701-719.
    [10] 熊紹珍 and 朱美芳, 太陽能電池基礎與應用. 北京科學出版社, 2009.
    [11] Neamen and D. A., Semiconductor physics and devices : basic principles. McGraw-Hill Science Engineering, 2012.
    [12] https://zh.wikipedia.org/wiki/PN%E7%BB%93.
    [13] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, "Electron Trapping in Dye/Polymer Blend Photovoltaic Cells," Adv.Mater., vol. 17, p. 1270, 2000.
    [14] P. Peumans and S. R. Forrest, "Very-high-efficiency double -heterostructure copper phthalocyanine/C60 photovoltaic cells," Appl.Phys.Lett., vol. 79, p. 126, 2001.
    [15] H. Hoppe and N. S. Sariciftci, "Prospective Comparison of Contrast Enhanced CT Colonography and Conventional Colonoscopy for Detection of Colorectal Neoplasms in a Single Institutional Study Using Second-Look Colonoscopy with Discrepant Results," J. Mater. Res., vol. 19, p. 1924, 2004.
    [16] J. Y. Kim and A. J. Bard, "Organic Donor/Acceptor Heterojunction Photovoltaic Devices based on Zinc Phthalocyanine and a Liquid Crystalline Perylene Diimide," Chem. Phys. Lett., vol. 383, p. 11, 2004.
    [17] H. Sarvari et al., "Comprehensive study of the two-step solution processes in ambient air for lead iodide perovskite solar cells," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 0823-0827.
    [18] Y. Zhao, A. M. Nardes, and K. Zhu, "Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length," The Journal of Physical Chemistry Letters, vol. 5, no. 3, pp. 490-494, 2014.
    [19] H.-S. Kim et al., "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol. 2, p. 591, 2012
    [20] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, no. 6107, pp. 643-647, 2012.
    [21] J.-Y. Jeng et al., "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
    [22] S. Sun et al., "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, vol. 7, no. 1, pp. 399-407, 2014.
    [23] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Article vol. 4, p. 2761, 2013.
    [24] J. You et al., "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility," ACS Nano, vol. 8, no. 2, pp. 1674-1680, 2014.
    [25] C.-H. Chiang, Z.-L. Tseng, and C.-G. Wu, "Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process," Journal of Materials Chemistry A, vol. 2, no. 38, pp. 15897-15903, 2014.
    [26] J. Kim et al., "Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer," Journal of Materials Chemistry A, vol. 2, no. 41, pp. 17291-17296, 2014.
    [27] H. Zhang et al., "Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer," Chemistry of Materials, vol. 26, no. 18, pp. 5190-5193, 2014.
    [28] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells," Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2014.
    [29] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells," Advanced Functional Materials, vol. 24, no. 21, pp. 3250-3258, 2014.
    [30] H.-B. Kim et al., "Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells," Nanoscale, vol. 6, no. 12, pp. 6679-6683, 2014.
    [31] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process," Energy & Environmental Science, vol. 7, no. 7, pp. 2359-2365, 2014.
    [32] P.-W. Liang et al., "Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells," Advanced Materials, vol. 26, no. 22, pp. 3748-3754, 2014.
    [33] J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Letter vol. 499, no. 7458, pp. 316-319, 2013.
    [34] Y. Wu et al., "Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition," Energy & Environmental Science, vol. 7, no. 9, pp. 2934-2938, 2014.
    [35] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Letter vol. 501, no. 7467, pp. 395-398, 2013.
    [36] O. Malinkiewicz et al., "Perovskite solar cells employing organic charge-transport layers," Nat Photon, Letter vol. 8, no. 2, pp. 128-132, 2014.
    [37] H. Hu et al., "Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells," RSC Advances, vol. 4, no. 55, pp. 28964-28967, 2014.
    [38] Q. Chen et al., "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process," Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
    [39] M. Xiao et al., "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells," Angewandte Chemie, vol. 126, no. 37, pp. 10056-10061, 2014.
    [40] 林宇君, "新型低能隙聚芴系共聚物之合成及其在太陽能電池之應用," 國立成功大學材料科學及工程學系, vol. 碩士論文, 2009 年.
    [41] 黃詩吟, "摻雜銀奈米粒子於有機高分子太陽能電池之研究," 國立成功大學材料科學及工程學系, vol. 碩士論文, 2010年.
    [42] L.-C. Chen, C.-C. Chen, J.-C. Chen, and C.-G. Wu, "Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process," Solar Energy, vol. 122, pp. 1047-1051, 2015.
    [43] C. Jiang, S. L. Lim, W. P. Goh, F. X. Wei, and J. Zhang, "Improvement of CH3NH3PbI3 Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 7, no. 44, pp. 24726-24732, 2015.
    [44] C.-H. Chiang and C.-G. Wu, "Bulk heterojunction perovskite–PCBM solar cells with high fill factor," Nat Photon, Article vol. 10, no. 3, pp. 196-200, 2016.
    [45] W. Sun et al., "Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells," Nanoscale, vol. 8, no. 35, pp. 15954-15960, 2016.

    無法下載圖示 校內:2022-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE