| 研究生: |
林家庸 Lin, Chia-Yung |
|---|---|
| 論文名稱: |
合成與描述以Tris(2-pyridylmethyl)amine為配位基的釩金屬化合物 Synthesis and characterization of vanadium complexes of Tris(2-pyridylmethyl)amine ligand |
| 指導教授: |
許鏵芬
none |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 釩金屬化合物 |
| 外文關鍵詞: | vanadium complexes |
| 相關次數: | 點閱:38 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
釩金屬在生物系統中被描述可以當成幾種酵素系統和化合物的組成,兩種已經確認包含釩金屬的酵素為鹵化過氧化酵素(haloperoxidases)和固氮酵素(nitrogenase)。另外,一些海鞘動物(ascidians)會累積高濃度的釩三價金屬V(Ⅲ)在血液細胞的液泡中,這些V(Ⅲ) 形式和功能目前尚不清楚,難以理解的是這些有機體是如何傳遞及將海水的V(Ⅴ)氧化還原成 V(Ⅳ) 和 V(Ⅲ)。
釩金屬的基礎的配位化學有助於去了解釩金屬在這些生物系統所扮演的角色,在這特別的研究中,我們探討的化學為釩金屬和TPA配位基[L=Tri(2-
-pyridylmethyl)amine],將三價釩金屬[VCl3(thf)3]和TPA在存在三乙基胺中反應,會產生兩個雙釩三價divanadium(III)物種,這共結晶物為化合物(1),{[ VIII2(μ-O)(TPA)2Cl2][VIII2(μ-O)(TPA)2(OH)2]}(ClO4)4 (1),化合物(1)會氧化作用至雙釩四價化合物divanadium(IV),和未氧化雙釩三價divanadium(III)共結晶成化合物(2),{[VIII2 (μ-O)(TPA)2Cl2][ VIV2(μ-O)( TPA)2O 2]}(ClO4)4 (2)。另一方面,將三價釩金屬[VCl3(thf)3]和TPA在存在於醋酸鈉和空氣中會得到單核釩四價化合物,[VIV(TPA)OCl]ClO4 (3),添加三乙基胺到化合物(3)會產生含有以氧為架橋的雙釩四價divanadium(IV)的物種,[ VIV2 (μ-O)( TPA)2O 2](ClO4)2 (4),這化合物(4)可以穩定存在CH3CN下,但是存在含有ether或THF時會氧化為[VV(O)2 (TPA)]ClO4 (5)物種,在這裡我們詳細研究這些化合物並描述其結構和光譜。
Abstract
Vanadium has been characterized as a constituent of several enzyme systems and complexes within living organisms. Two well established vanadium containing enzymes are haloperoxidases and nitrogenase. In addition, Some of ascidians accumulate high concentration of V(III) in vacuoles of the blood. The function and form of those V(III) species are not clear. It is also obscure how these organisms carry redox conversion from V(V) species in seawater to and V(III) species.
To elucidate the roles of vanadium in these biological systems, it id advantageous to understand the basic coordination chemistry of vanadium. In this particular research, we explored the chemistry of vanadium with TPA ligand [TPA = Tri(2-pyridylmethyl)amine]. The reaction of [VCl3(thf)3] with TPA in the presence of triethylamine yielded two divanadium(III) species that cocrystalized as compound 1, {[VIII2(μ-O)(TPA)2Cl2][VIII2(μ-O)(TPA)2(OH)2]}(ClO4)4 (1). The oxidation of 1 led to a divanadium(IV) complex that cocrystalized with unoxidized divanadium(III) species as compound 2, {[VIII2(μ-O)(TPA)2Cl2][VIV2(μ-O)(TPA)2(O)2]}(ClO4)4 (2). In the other end, the reaction of [VCl3(thf)3] and the TPA ligand in the presence of sodium acetate and air gave a mononuclear vanadium(IV) complex [VIV(TPA)OCl] ClO4 (3). Adding the triethylamine to compound 3 resulted in a divanadium(IV) species with the oxo bridge, [VIV2(μ-O)(TPA)2O 2](ClO4)2 (4). The compound 4 was stable in CH3CN, but oxidized to a vanadium(V) species, [VV(O)2(TPA)](ClO4) (5) in the presence of ether or THF. The structures and spectroscopies of these compounds have been characterized.
1. Kanamori,; Kameda, K. E.; Okamoto. K. Bull.Chem.Soc.Jpn. 1996, 69, 2901.
2. Henze M. Hoppe-Seyler’s Z. Physiol. Chemie.1911,72,494.
3. Taylor, W. S.; Kammerer, B.; Ernst Bayer, E. Chem. Rev. 1997, 97, 333.
4. Vilter, H. Phytochemistry 1984, 23, 1387
5. Vilter, H. Met. Ions Biol. Syst. 1995, 31, 325.
6. Everett, R.R.; Butler, A. Inorg.Chem. 1989, 28, 393.
7. Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. Chem. Rev. 2004, 104, 849.
8. Messerschmidt, A.; Wever, R. Proc. Natl. Acad. Sci. USA 1996, 93, 392.
9. Messerschmidt, A.; Prade, L.; Wever, R. Biol. Chem. 1997, 378, 309.
10. Butler, A.; Clague, M.J.; Meister, G.E. Chem. Rev. 1994, 94, 625.
11. McGinley, J. ;Hazell, A. ; Toftlund, H. J. Chem. Soc., Dalton Trans., 2002, 2390.
12. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118, 3469.
13. Kosugi, M.; Hikichi,; S.; Akita, M.; Moro-oka, Y. J. Chem. Soc., Dalton Trans., 1999, 1369.
14. Triantafillou, D. G.; Tolis, I. E.; Terzis, A.; Deligiannakis, Y.; Raptopoulou, P. C.; Sigalas, P. M.; Kabanos, A. T. Inorg.Chem.2004, 43, 79.
15. Anderegg, G.; Wenk, F. Helv. Chim. Acta, 1967,50,2330
16. Nanthakumar, A.; Fox, S.; Murthy, N. N.; Karlin, D. K. J. Am. Chem. Soc. 1997, 119, 3898.
17. Manzer, L. E.; Fackler, J. P., Eds. Inorganic Syntheses, Wiley:New York 1982, Vol. XXI, p 138.
18. Grant, M. C.; Stamper, J. B.; Knapp, J. M.; Folting, Huffman, C. J.; Hendrickson, N. D.; George Christou, G. J. Chem. Soc., Dalton Trans., 1999, 3399.
19. Ghosh, S.; Nanda, K. K.; Addison, W. A.; Raymond J. Butcher, J. R. Inorg.Chem.2002, 41, 2243.
20. Brand, G. S.; Edelstein, N.; Hawkins, J. C.; Shalimoff, G.; Snow, R. M.; TiekinkIc, R. T. E.Inorg.Chem.1990, 29, 434.
21. Holwerda, A. R,; Whittlesey, R. B.Inorg.Chem.1998, 37, 64.
22. Newton, T. W.; Baker, F. B.J. Phys. Chem., 1964, 68, 228.
23. Kanamori, K.; Ookubo, Y.; Ino, K.; Kawai, K.; Michibata, H.Inorg. Chem., 1991, 30, 3832.
24. Toftlund, H.; Larsen, S.; Murray, S. K. Inorg. Chem., 1991, 30, 3964.
25. Cancela, J.; Garmendia, J. G. M.; Quiros, M. Inorg.Chim.Acta.,2001, 313, 156.
26. Kruger, H. J.; Kelm, H. Inorg. Chem. 1996, 35, 3533.
27. Hitchcock, B. P.; Lee, H. T.; Leigh, G. J. Inorg.Chim.Acta.,2003, 349, 159.
28. Mohan, M.; Bond, R. M.; Otieno, T.; Carrano, J. C. Inorg. Chem. 1995, 34, 1233.