簡易檢索 / 詳目顯示

研究生: 林士翔
Lin, Shih-hsiang
論文名稱: 應用BIV及PIV量測波浪通過潛礁之碎波流場研究
Application of BIV and PIV Techniques to Breaking Wave-Induced Flow Fields over Artificial Reef
指導教授: 許泰文
Hsu, Tai-wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 人工潛礁氣泡影像測速儀質點影像測速儀
外文關鍵詞: Artificial reef, PIV, BIV
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用質點影像測速儀( Particle Image Velocimetry, PIV ) 以及自行研發之氣泡影像測速儀( Bubble Image Velocimetry, BIV ) 於水槽中量測波浪通過人工潛礁之水位與流場變化情形,進而探討波浪通過人工潛礁後之碎波現象。
    量測結果顯示,當波浪於潛礁上方碎波時,波高有明顯的減衰現象並隨著向下游傳遞距離增加波高減衰情況越顯著。而當波浪發生碎波時,波峰上方水體向前與向下崩塌受重力影響將空氣捲入水體,而產生氣泡,而氣泡速度不斷地受前方水體的影響速度下降。在氣泡涵蓋範圍內,上下方水體有分層現象,而此現象的範圍亦隨著波浪向下游傳遞的距離增加而變長。

    This thesis use Particle Image Velocimetry (PIV) and Bubble Image Velocimetry (BIV) to measure the various complex flow phenomena surrounding an artificial reef owing to its interaction with an oncoming wave.
    Based on the experimental results, the wave height of progressive wave decreases gradually with the increase of the distance of artificial reef. When wave breaking, the wave take the air into water and have air bubble. The air bubble velocity constantly decrease by the bubble impact in front of water. In breaking wave, surround of waterline’s field, the velocity is more faster than surround of structure. And the scope of this phenomenon increase gradually with the increase of the distance of artificial reef.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 V 圖目錄 VI 符號說明 VIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 本研究組織 3 第二章 試驗設備與佈置 4 2-1 造波及波高擷取設備 4 2-2 試驗條件 6 2-3 PIV量測系統 7 2-4 BIV量測系統 10 第三章 PIV、BIV原理及驗證 12 3-1 PIV量測方法 12 3-2 BIV量測方法 14 3-3 BIV量測系統驗證 16 第四章 數值模式 18 第五章 結果與討論 21 5-1 人工潛礁附近之流場特性 25 5-1-1 區域I 26 5-1-2 區域II 32 5-1-3 區域III 38 5-1-4 區域IV 44 5-1-5 區域V 50 5-2 全區人工潛礁流場 56 5-3 數值計算結果 67 第六章 結論與建議 71 6-1 結論 71 6-2 建議 71 參考文獻 73

    1.Chang, K. A. and Liu P. F., “Velocity, Acceleration and Vorticity under a Breaking Wave, ” Physical of Fluids, Vol. 10, pp. 327–329 (1998)
    2.Chang, K. A., Hsu, T. J. and Liu, P. F., “Vortex Generation and Evolution in Water Waves Propagating over a Submerged Rectangular Obstacle, Part I. Solitary Waves,” Coastal Engineering, Vol. 44, pp. 13-36 (2001).
    3.Greated, C. A. and Emarat, N., “Optical Studies of Wave Kinematics,” Advances in Coastal and Ocean Engineering, Vol. 6, ed P L-F Liu (Singapore: World Scientific) pp 185–223, (2000)
    4.Hassan, Y. A., Schmidl, W. D. and Ortiz-Villafuerte, J., “Investigation of Three-dimensional Two-phase Flow Structure in a Bubbly Pipe,” Measurement Science Technology, Vol. 9, pp.309–326 (1998)
    5.Jansen, P. C. M., “Laboratory Observations of the Kinematics in the Aerated Region of Breaking Waves,” Coastal Engineering, pp. 453–477, Vol.9 (1986).
    6.Lindken, R. and Merzkirch, W., “A Novel PIV Technique for Measurements in Multi-Phase Flows and Its Application to Two-Phase Bubbly Flows,” Experiments in Fluids, Vol. 33, pp.814-825 (2002)
    7.Matthias, B., “Wave Attenuation by Artificial Reefs,” International Navigation Association, Bulletin, pp 1-33 (2006).
    8.Nishino, K., Kato, H. and Torii, K., “Stereo Imaging for Simultaneous Measurement of Size and Velocity of Particles in Dispersed Two-Phase Flow,” Measurement Science Technology, Vol. 11, pp.633–645 (2000)
    9.Ontowirjo, B. and Armono, H. D., “Artificial Reef Methodology for Coastal Protection Using Submerged Structures a Numerical Modeling Approach ,” Soft Shore Protection: An Environmental Innovation in Coastal Engineering, pp. 211-225 (2003).
    10.Perlin, M., He, J. and Bernal, L. P., “An Experimental Study of Deep Water Plunging Breakers,” Physics of Fluids, Vol. 8, pp.2365–2274 (1996)
    11.Petti, M., Quinn, P. A., Liberatore, G.. and Easson, W. J., “Wave Velocity Field Measurement over a Submerged Breakwater,” Proceeding 24th International Conference Coastal Engineering, Japan, ASCE, pp. 525-539 (1994).
    12.Ryu, Y., Chang, K. A. and Lim, H. J., "Use of Bubble Image Velocimetry for Measurement of Plunging Wave Impinging on Structure and Associated Greenwater," Measurement Science and Technology, Vol. 16, pp.1945-1953 (2005)
    13.Takashi, Y., Hidenmi, M. and Natsuki, M., ”Kinematics of Overturning Solitary Waves and Their Relations to Breaker Types,” Coastal Engineering, Vol. 29, pp. 317-346, (1997).
    14.Ting, F. C. K. and Kim, Y. K., “Vortex Generation in Water Waves Propagation over a Submerged Obstacle,” Coastal Engineering, Vol. 24, pp.23-49 (1994).
    15.Ting, F. C. K. and Kirby, J. T., “Observation of Undertow and Turbulence in a Laboratory Surf Zone,” Coastal Engineering, Vol. 24, pp.51–80 (1994)
    16.Ting, F. C. K. and Kirby, J. T., “Dynamics of Surf-Zone Turbulence in a Strong Plunging Breaker,” Coastal Engineering, Vol. 24, pp.177–204 (1995)
    17.Valeri, P., Jens, S., Shirin, S. and Claus, Z., “Evaluation of Reef Breakwater Efficiency from Physical and Numerical Simulations,” Wirksamkeit Von Riffwellenbrechern Anhand Physikalischer Und Numerischer Simulationen, pp.161-194 (2005).
    18.Yasuda, T., Mutsuda, H. and Mizutani, N., “Kinematics of overturning solitary waves and their relations to breaker types,” Coastal Engineering, pp. 317-346 (1997).
    19.郭金棟,「海岸保護」,科技圖書股份有限公司,(2004)。

    下載圖示 校內:2010-08-27公開
    校外:2012-08-27公開
    QR CODE