| 研究生: |
楊欣展 Yang, Xin-Zhan |
|---|---|
| 論文名稱: |
利用程序迴路模擬發展與驗證微衛星姿態控制次系統 Development and Verification of the Microsatellite Attitude Control Subsystem Based on Processor-in-the-Loop Method |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 微衛星 、姿態控制 、程序迴路模擬 、磁場微分控制 |
| 外文關鍵詞: | Microsatellite, Attitude Control, Processor-in-the-loop, B-dot Control Law |
| 相關次數: | 點閱:106 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成功大學的CKUTEX (Cheng Kung University Technology Experimental Satellite)微衛星計畫係國內自主發展之實驗型微衛星;CKUTEX微衛星任務為量測衛星與火箭分離階段之數據與驗證實驗酬載系統,實驗酬載系統分別為太陽感測器(Digital Sun Sensor, DSS)與太空及GPS接收器系統。因此微衛星必需提供控制法則使得微衛星與火箭分離後,使衛星能在較小變化之姿態或穩定之角速度繞行衛星軌道。本論文詳述姿態控制器之設計、實現與驗證,針對所選用之制動器引用磁場微分控制,使用軟體分析和設計控制器參數,並選用微電腦單晶片和可程式系統晶片來實現控制器,並發展一套程序迴路模擬(Processor-in-the-loop Simulation)來驗證控制器之可行性與軟體設計之分析,程序迴路係為使用即時模擬系統模擬太空環境與衛星動態,結合控制器電路進而驗證姿態控制演算法的功能與性能。
CKUTEX (Cheng Kung University Technology Experimental Satellite) is part of the self-reliant experimental micro-satellite program in Taiwan. The mission of CKUTEX Satellite is to record pertinent data after its separation from the launch vehicle and verify the self-developed payloads. CKUTEX has 2 payloads, which are space-borne GPS receiver and digital sun sensor, respectively. After the separation, CKUTEX must provide attitude control function in order to stabilize the angular velocity and maintain small attitude changes in orbit.
This thesis describes the design, implementation and verification of the attitude controller. The attitude controller implements B-dot control law. With the aid of software, the design and analysis of controller’s parameters can be achieved. A microcontroller and SOPC (System On Programmable Chip) are implemented for the development of attitude controller. To fully develop and verify the feasibility of the attitude controller, processor-in-the-loop (PIL) simulation is developed. The simulation facility contains a dynamic simulator and real-time controller, as well as some interfacing circuitry. The dynamic simulator is capable of performing simulation of the space environment, orbit dynamic, attitude dynamic, and sensor/actuator models. This real-time simulation verifies the function and performance of the attitude controller.
參考文獻
[1] F. Bayat and H. Boland, “A Heuristic Design Method for Attitude Stabilization of Magnetic Actuated Satellites,” Acta Astronautica Vol.65 pp.1813-1825, 2009.
[2] Guowei Cai, Ben M. Chen, Tong H. Lee and Miaobo Dong, “Design and Implementation of a Hardware-in-the-loop Simulation System for Small-scale UAV Helicopters,” Mechatronics Vol.19 Issue 7 pp.1057-1066, 2009.
[3] C. Dase, J. Sullivan, and B. MacCleery, “Motorcycle Control Prototyping Using an FPGA-based Embedded Control System,” IEEE Control Systems Magazine, Vol. Issue 5 pp.17–21, 2006.
[4] C. J. Fong, A. Lin, A. Shie, M. Yeh, W. C. Chiou, M. H. Tsai, P. Y. Ho, C. W. Liu, M. S. Chang, H. P. Pan, S. Tsai, and C. Hsiao, “Lessons Learned of NSPO’s Picosatellite Mission: YamSat – 1A, 1B, &1C,” in Proceedings of the 16th AIAA/USU Conference on Small Satellites, 2002.
[5] J.A. Farrell. Aided Navigation: GPS with High Rate Sensors, McGraw Hill, 2008.
[6] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc, 2001.
[7] Y. W. Jan and J. C. Chiou, “Attitude Control System for ROCSAT-3 Microsatellite: a Conceptual design,” Acta Astronaut., Vol56 Issue 4, pp.439-452, 2004.
[8] W. Kwon and S. G. Choi. “Real-Time Distributed Software-In-the-Loop Simulation for Distributed Control Systems,” in Proceedings of IEEE. International Symposium of Computer-Aided Control System Design, pp. 115–119, 1999.
[9] A. Lin, C. L. Chang, S. Tsai, C. J. Fong, C. P. Chang, R. Lin, C. W. Liu, M. Yeh, M. H. Chung, H. P. Pan and C. H. Hwang, “YamSat: the First Picosatellite Being Developed in Taiwan,” in Proceedings of the 15th AIAA/USU Conference on Small Satellites, 2001.
[10] M. Lovera and A. Varga, “Optimal Discrete-time Magnetic Attitude Control of Satellites,” in 16th IFAC World Congress, Prague, Czech Republic.
[11] S. Lagrasta and M. Bordin, “Normal Mode Magnetic Control of LEO Spacecraft with Integral Action,” in AIAA Guidance, Navigation and Control Conference, San Diego, USA.
[12] E. R. Mueller, “Hardware-in-the-loop Simulation Design for Evaluation of Unmanned Aerial Vehicle Control Systems,” in Proceedings of AIAA Modeling and Simulation Technologies Conference, vol. 1, pp. 530–543, 2007.
[13] E Silani and M Lovera, “Magnetic Spacecraft Attitude Control: A Survey and Some New Results,” Control Engineering Practice Vol.13 Issue 3, pp.357–371, 2005.
[14] M. J. Sidi. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, Cambridge, 1997.
[15] J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
[16] 林辰宗, 張宏淵, “ROCSAT-3姿態控制系統穩定安全模式之Processor-in-the-loop系統”, 中國航太學會, 2003.
[17] 莊智清、黃國興,電子導航,全華科技圖書,2001
[18] 黃金維、曾子榜、林廷融、傅景隆、Drazen Svehla, “福爾摩沙衛星三號精密定軌及重力應用”, 物理雙月刊(廿八卷六期)2006
[19] 蕭如宣,SOPC系統設計,儒林圖書公司,2003
[20] 潘松、黃繼業、曾毓,SOPC設計實務,全華科技圖書,2006
[21] 李愷倫,「皮米衛星姿態判定與控制次系統之設計與測試」,成功大學航空太空工程研究所碩士論文, 2004
[22] 吳世驊,「皮米級衛星姿態控制次系統之設計及實現」, 成功大學電機工程學系碩士論文, 2006
[23] 張森喬,「衛星姿態控制即時模擬與原型控制器快速製作」,成功大學電機工程學系碩士論文, 2000
[24] http://www.stras-space.com/
[25] http://www.ni.com
[26] http://www.microchip.com/