| 研究生: |
吳恩綺 Wu, En-Chi |
|---|---|
| 論文名稱: |
機率式海嘯危害度分析方法與潮汐之影響 Incorporating Tidal Uncertainty into the Methodology of Probabilistic Tsunami Hazard Analysis |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 海嘯危害度分析PTHA 、潮位偶然不確定性 、COMCOT |
| 外文關鍵詞: | Probabilistic tsunami hazard analysis, Tidal uncertainty, COMCOT |
| 相關次數: | 點閱:65 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來環太平洋地震帶活躍,若是有淺海大規模的地震發生而引起海嘯,將造成近岸地區大規模溢淹、建築物損壞、人員傷亡以及核能電廠的輻射危機,有鑑於日本311的慘重災情,本研究發展海嘯災害的量化方法,以機率式海嘯危害度分析方法(Probabilistic Tsunami Hazard Analysis, PTHA)探討台灣發生海嘯之可能性,因馬(2015)已經建立PTHA之研究方法與計算流程於核三廠。本研究將進一步探討PTHA與潮汐的影響,比較不同的潮位機率理論以及建立研究之方法流程。
機率計算中必然有不確定性的存在,Thio等人(2010)將不確定性區分為偶然不確定性(Aleatory Uncertainty)與認知不確定性(Epistemic Uncertainty),其中偶然不確定性為數值模式中存在的誤差,可透過研究工具的精進解決,本研究的數值工具COMCOT可選擇加入不同的靜態潮位做模擬計算,將潮位納入偶然不確定性分析。Mofjeld等人(2007)提出高斯方法,將最大海嘯波高與潮汐疊合之機率擬合為高斯分佈,簡單計算PTHA加入潮位不確定性之研究結果;而Adams等人(2015)的理論,則是使用時間週期方法與型態方法,將數值模擬的結果與一年的實測潮位紀錄結合計算超越機率。本研究比較此三種方法之優缺點與適用性,建立PTHA考量潮位不確定性之研究流程,並將理論結果應用於核三廠。其中型態方法考量模擬波高計之時序列計算海嘯與潮位的機率參數,雖然須配合多種靜態潮位模擬,計算過程也比較複雜,但有較適切與嚴謹的理論方法,因此本論文建議可使用型態方法分析PTHA潮位偶然不確定性。
The Circum-Pacific Belt has become active in recent years, and the shallow earthquake in the border area of land and sea probably causes tsunami disaster. This includes overflow flooded, building damage, casualties and radiation crisis of nuclear power plant. In view of 2011 Tohoku-Oki tsunami, tsunami hazard analysis is applied in this study. To quantify the risk, probabilistic tsunami hazard analysis (PTHA) serves as a powerful methodology. Ma (2015) has already established the method of PTHA. Therefore, this study will further investigate the tidal effect of PTHA.
Generally, uncertainties exist in various ways of probability analysis. PTHA distinguishes them into two kinds, namely aleatory and epistemic uncertainties. Aleatory uncertainty stems from the deviation of modeling and reality, and it could be solved by improvement of numerical simulation. To deal with the aleatory uncertainty, we incorporate tidal uncertainty into PTHA. Different static tidal stages are set in Cornell Multi-grid Coupled Tsunami model (COMCOT) to evaluate tsunami hazards. Using the Δt Method and the Pattern Method proposed by Adams et al. (2015), which combine tsunami events with a typical year of tidal record. Additionally, the Gaussian Method proposed by Mofjeld et al. (2007) could apply the theoretical probability distribution to such a research easily. These three methods are compared in this study and the Pattern Method is regarded as the most rigorous theory. Finally, the method of incorporating tidal uncertainty into PTHA has been established and been utilized to Maanshan nuclear power plant in Taiwan.
1. Adams, L.M., R.J. LeVeque, and F.I. Gonza´lez, The Pattern Method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 2015. 76(1): p. 19-39.
2. Adams, L.M., R.J. LeVeque, and F.I. Gonza´lez. Probabilistic Tsunami Hazard Assessment (PTHA) for Crescent City, CA. Final Report for Phase I. University of Washington Department of Applied Mathmatics, 2013.
3. Androsov, A., J. Behrens, and S. Danilov, Tsunami modelling with unstructured grids. Interaction between tides and tsunami waves, in Computational Science and High Performance Computing IV. 2011, Springer. p. 191-206.
4. Annaka, T., K. Satake, T. Sakakiyama, K. Yanagisawa, and N. Shut, Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure and Applied Geophysics, 2007. 164(2-3): p. 577-592.
5. Berger, M.J., D.L. George, R.J. LeVeque, and K.T. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 2011. 34(9): p. 1195-1206.
6. Bommer, J.J. and N.A. Abrahamson, Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 2006. 96: p. 1976-1977.
7. Cho, Y.-S., Numerical simulations of tsunami and runup. 1995, Cornell University.
8. Cornell, C.A., Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 1968. 58(5): p. 1583-1606.
9. González, F.I., V.V. Titov, H.O. Mofjeld, A.J. Venturato, R.S. Simmons, R. Hansen, R. Combellick, R.K. Eisner, D.F. Hoirup, B.S. Yanagi, S. Yong, M. Darienzo, G.R. Priest, G.L. Crawford, and T.J. Walsh, Progress in NTHMP Hazard Assessment. Natural Hazards, 2005. 35(1): p. 89-110.
10. Gonza´lez, F.I., E.L. Geist, B. Jaffe, U. Kanoglu, H. Mofjeld, C.E. Synolakis, V.V. Titov, D. Arcas, D. Bellomo, D. Carlton, T. Horning, J. Johnson, J. Newman, T. Parsons, R. Peters, C. Peterson, G. Priest, A. Venturato, J. Weber, F. Wong, and A. Yalciner, Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research-Oceans, 2009. 114: p. 19.
11. Gonza´lez, F.I., R.J. LeVeque, and L.M. Adams, Probabilistic Tsunami Hazard Assessment (PTHA) for Crescent City, CA. Final Report for Phase I. 2013, University of Washington Department of Applied Mathmatics.
12. Houston, J.R. and A.W. Garcia, Type 16 Flood Insurance Study: Tsunami Predictions for the West Coast of the Continental United States. 1978, DTIC Document.
13. Imamura, A., List of tsunamis in Japan. J. Seismol. Soc. Japan, 1949. 2: p. 23-28.
14. Imamura, F., N. Shuto, and C. Goto. Numerical simulations of the transoceanic propagation of tsunamis. in Sixth Congress of the Asian and Pacific Regional Division, Int. Assoc. Hydraul. Res., Kyoto, Japan. 1988.
15. Kowalik, Z. and A. Proshutinsky, Tsunami-tide interactions: A Cook Inlet case study. Continental Shelf Research, 2010. 30(6): p. 633-642.
16. Kowalik, Z., T. Proshutinsky, and A. Proshutinsky, Tide-tsunami interactions. Science of Tsunami Hazards, 2006. 24(4): p. 242-256.
17. LeVeque, R.J., D.L. George, and M.J. Berger, Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 2011. 20: p. 211-289.
18. Lin, I. and C.C. Tung, A preliminary investigation of tsunami hazard. Bulletin of the Seismological Society of America, 1982. 72(6): p. 2323-2337.
19. Liu, P.L.-F., S.B. Woo, and Y.S. Cho, Computer programs for tsunami propagation and inundation. Cornell University, 1998.
20. Liu, P.L.F., Y.S. Cho, S.B. Yoon, and S.N. Seo, Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii, in Tsunami: Progress in Prediction, Disaster Prevention and Warning, Y. Tsuchiya and N. Shuto, Editors. 1995, Springer Netherlands. p. 99-115.
21. Liu, P.L.F. and X.M. Wang, Tsunami source region parameter identification and tsunami forecasting. Journal of Earthquake and Tsunami, 2008. 2(2): p. 87-106.
22. Liu, P.L.F., X.M. Wang, and A.J. Salisbury, Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 2009. 36(1): p. 2-12.
23. Mofjeld, H.O., F.I. GonzáLez, E.N. Bernard, and J.C. Newman, Forecasting the heights of later waves in Pacific-wide tsunamis. Natural Hazards, 2000. 22(1): p. 71-89.
24. Mofjeld, H.O., F.I. Gonza´lez, and J.C. Newman, Short-Term Forecasts of Inundation during Teletsunamis in the Eastern North Pacific Ocean, in Perspectives on Tsunami Hazard Reduction, G. Hebenstreit, Editor. 1997, Springer Netherlands. p. 145-155.
25. Mofjeld, H.O., F.I. Gonza´lez, V.V. Titov, A.J. Venturato, and J.C. Newman, Effects of tides on maximum tsunami wave heights: Probability distributions. Journal of Atmospheric and Oceanic Technology, 2007. 24(1): p. 117-123.
26. Okada, Y., Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1985. 75(4): p. 1135-1154.
27. Pawlowicz, R., B. Beardsley, and S. Lentz, Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 2002. 28(8): p. 929-937.
28. PG&E, Methodology for probabilistic tsunami hazard analysis: Trial application for the Diablo Canyon power plant site. 2010, Pacific Gas & Electric Company.
29. Priest, G.R., Tsunami hazard assessment of the Northern Oregon coast: a multi-deterministic approach tested at Cannon Beach, Clatsop County, Oregon. 2009: Citeseer.
30. Rikitake, T. and I. Aida, Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 1988. 78(3): p. 1268-1278.
31. Soloviev, S., Recurrence of tsunamis in the Pacific. Tsunamis in the Pacific Ocean, 1970: p. 149-163.
32. Synolakis, C.E. and E.N. Bernard, Tsunami science before and beyond Boxing Day 2004. Philos Trans A Math Phys Eng Sci, 2006. 364(1845): p. 2231-65.
33. Tang, L., E. Tolkova, M. Spillane, V. Titov, and E. Bernard, Assessment of potential tsunami impact for Pearl Harbor, Hawaii. 2006: Pacific Marine Environmental Laboratory.
34. Thio, H.K., P. Somerville, and J. Polet, Probabilistic tsunami hazard in California. 2010: p. 1-331.
35. Vandorn, W.G., SOME TSUNAMI CHARACTERISTICS DEDUCIBLE FROM TIDE RECORDS. Journal of Physical Oceanography, 1984. 14(2): p. 353-363.
36. Walsh, T.J., A.C. Heinitz, and C.G. Caruthers, Tsunami hazard map of the southern Washington coast: modeled tsunami inundation from a Cascadia subduction zone earthquake. 2000: Washington (State), Division of Geology and Natural Resources.
37. Wang, X.M., User manual for COMCOT version 1.7. 2009.
38. Wang, X.M. and P.L.F. Liu, A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Cmes-Computer Modeling in Engineering & Sciences, 2005. 10(2): p. 171-183.
39. Wang, X.M. and P.L.F. Liu, Preliminary simulation of 1986 & 2002 Taiwan Hualien tsunami. Cornell University, Ithaca., 2005.
40. Wang, X.M. and P.L.F. Liu, An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 2006. 44(2): p. 147-154.
41. Watts, P., S.T. Grilli, J.T. Kirby, G.J. Fryer, and D.R. Tappin, Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 2003. 3(5): p. 391-402.
42. Wells, D.L. and K.J. Coppersmith, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 1994. 84(4): p. 974-1002.
43. Wilson, B.W. and A. Torum, The tsunami of the Alaskan earthquake,1964; Engineering evaluation. TM-25, U.S. Army Coastal Eng. Res. Cneter, Washington D.C., 1968.
44. Wong, P.P., Impacts and Recovery from a Large Tsunami: Coasts of Aceh. Polish Journal of Environmental Studies, 2009. 18(1): p. 5-16.
45. Yen, Y.T. and K.F. Ma, Source-Scaling Relationship for M 4.6-8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 2011. 101(2): p. 464-481.
46. Yoon, S.B., Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research-Oceans, 2002. 107(C10).
47. Zhang, Y.J., R.C. Witter, and G.R. Priest, Tsunami-tide interaction in 1964 Prince William Sound tsunami. Ocean Modelling, 2011. 40(3-4): p. 246-259.
48. 中央氣象局, 2014潮位統計年報表. 2015, 中央氣象局.
49. 行政院原子能委員會, 國內核能電廠現有安全防護體制全面體檢方案總檢討報告. 2012, 行政院原子能委員會.
50. 馬婉華, 機率式海嘯危害度分析方法建立-應用於核三廠. 2015, 國立成功大學水利及海洋工程研究所.
51. 楊文昌 and 吳季莊, 暴潮分析與預警系統技術發展. 2014, 財團法人國家實驗研究院台灣海洋科技研究中心.
52. 歐善惠, 黃煌煇, and 朱志誠, 台灣電力公司核能四場海嘯研究報告. 1983, 經濟部水資源統一規劃委員會: 國立成功大學台南水工試驗所.
53. 蕭士俊,2015,「海嘯浪高波傳機率模型之建置研究 (104年度期末報告)」,行政院原子能委員會委託研究計畫研究報告。
校內:2018-08-31公開