簡易檢索 / 詳目顯示

研究生: 王伯恩
Wang, Po-En
論文名稱: 海潮流發電用變流器系統並聯控制之研究
Study on Parallel-Controlled Inverter System for Tidal Current Power Generation
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 93
中文關鍵詞: 變流器並聯運轉功率解耦鎖相控制
外文關鍵詞: inverter, parallel operation, phase-locked loop
相關次數: 點閱:89下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨就海潮流發電應用,研製一並聯變流器系統,透過並聯運轉方式擴充系統容量以因應負載需求且當任一系統故障時,其餘系統仍能持續運作,補足電力所需,提升整體系統運行之可靠度。本文以數位信號處理器為控制核心,建構具獨立供電模式與市電併聯模式之並聯變流器系統,利用結合電壓控制與電流控制之主僕式架構作為並聯運轉控制策略。電壓控制法回授交流電壓資訊,透過座標軸轉換概念於同步旋轉軸上進行電壓閉迴路控制,使系統於負載變動及輸入電壓變動情況下,皆可輸出穩定電壓。電流控制法回授交流電流資訊,透過同步旋轉座標轉換技術達到實虛功率之解耦,控制變流器系統追隨功率參考命令,達到均流及分流控制。另外,市電併聯之鎖相控制結合二階廣義積分正交信號產生器與同步信號檢測迴路取得市電及系統輸出電壓之相角資訊,進行輸出電流之同步控制。最後,本文以數位信號處理器實現變流器系統之並聯控制,完成獨立供電約1000 W及市電併聯約500 W之實驗來驗證其可行性。

    In this thesis, the digital parallel-controlled inverter system is developed. The control strategy of the system is the combination of constant voltage control and constant current control which can let the system operate both in standalone and grid-connected mode. The constant voltage control strategy is realized by translating the output voltage signal from the stationary frame into the rotating frame so that sinusoidal voltage can be treated as dc value to be regulated. The constant current control strategy is implemented based on dq reference frame. By means of Park transformation, sinusoidal current can be represented as dc value, rotating synchronously at the detected frequency provided by phase-locked loop so that the active power and reactive power can be controlled separately by dq current command. Furthermore, with the use of the proposed PLL consist of the structure based on a second order generalized integrator (SOGI), the phase angle can be tracked precisely. Finally, the parallel-controlled inverter system is realized and experimental results show that the system can supply up to 1000 W in standalone mode and 500 W in grid-connected mode.

    中文摘要 I 英文摘要 II 英文延伸摘要 Ⅲ 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 5 1-4 論文大綱 6 1-5 論文主要貢獻 7 第二章 變流器系統分析與設計 8 2-1 前言 8 2-2 系統功率級分析與設計 9 2-2-1 升壓式轉換器 9 2-2-2 全橋變流器 13 2-3 控制策略探討 24 第三章 變流器系統並聯控制分析與設計 26 3-1 前言 26 3-2 變流器並聯控制策略 27 3-2-1 數位式鎖相控制 27 3-2-2 變流器系統電壓控制 36 3-2-3 變流器系統電流控制 38 第四章 系統軟體規劃與硬體設計 42 4-1 系統整體規劃 42 4-2 系統軟體規劃 43 4-2-1 數位信號處理器簡介 43 4-2-2 數位信號處理器初始化設置 45 4-2-3 主程式控制流程 48 4-2-4 數位鎖相迴路控制副程式 49 4-2-5 升壓式轉換器電壓回授控制副程式 50 4-2-6 單相變流器電壓控制副程式 51 4-2-7 單相變流器電流控制副程式 53 4-2-8 雙組變流器系統並聯運轉流程 55 4-3 系統周邊硬體電路設計 56 4-3-1 閘極驅動電路 56 4-3-2 直流側電壓感測電路 58 4-3-3 交流側電壓感測電路 59 4-3-4 交流側電流感測電路 59 4-3-5 繼電器驅動電路 60 4-3-6 串列周邊介面 61 4-4 整體系統架構電路圖 64 第五章 電路模擬與實驗結果 65 5-1 前言 65 5-2 電路模擬 65 5-2-1 前級升壓轉換器電路模擬 65 5-2-2 單組變流器系統獨立供電模擬 66 5-2-3 雙組變流器系統獨立供電模式並聯模擬 68 5-2-4 單組變流器系統市電併聯模擬 69 5-2-5 並聯變流器系統市電併聯模擬 70 5-3 實驗結果 72 5-3-1 升壓轉換器實驗結果 73 5-3-2 SPWM調變波形 74 5-3-3 單組變流器系統獨立供電模式實驗 75 5-3-4 雙組變流器系統獨立供電模式並聯實驗 77 5-3-5 單組變流器系統市電併聯供電實驗 79 5-3-6 雙組變流器系統市電併聯供電實驗 81 5-3-7 實驗數據分析與討論 82 5-4 實體電路圖 85 第六章 結論與未來展望 86 6-1 結論 86 6-2 未來研究方向 87 參考文獻 88

    [1] J. P. Dorian, H. T. Franssen, and D. R. Simbeck, “Global challenge in energy,” Energy Policy, pp. 1984-1991, May 2006.
    [2] “Renewables 2017 Global Status Report,” REN21, 2017.
    [3] A. O. Rousis, Y. Pipelzadeh, T. C. Green, and G. Strbac, “Benefits of distributed power generation for voltage support in GB transmission system: Case study on the south-east region,” in Proc. IET RTDN, 2017, pp. 1-6.
    [4] L. McDonald, A. R. Ahmadi, S. Do, and S. Georgiopoulos, “Enabling distributed energy resources to enter the energy market and supporting the evolution to a distribution system operator,” IET CIRED, Open Access Proc. J., vol. 1, no. 1, pp. 2715-2718, Oct. 2017.
    [5] P. W. Lee, Y. Z. Lee, and B. T. Lin, “Power distribution systems for future homes,” in Proc. IEEE PEDS, 1999, pp. 1140-1146.
    [6] H. Falk, “Prolong to renewable energy today and tomorrow,” Proc. IEEE, vol. 89, no. 8, pp. 1214-1215, Aug. 2001.
    [7] F. Giraud and Z. M. Salameh, “Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage,” IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 1-7, Mar. 2001.
    [8] Y. Yang, Y. Ruan, H. Q. Shen, Y. Y. Tan, and Y. Yang, “The design of inductance in AC side of grid-connected inverter in wind power generation,” in Proc. IEEE ICEMS, 2008, pp. 2464-2469.
    [9] M. Liu, W. Li, C. Wang, R. Billinton, and J. Yu, “Reliability evaluation of a tidal power generation system considering tidal current speeds,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3179-3188, Sep. 2015.
    [10]Y. Y. Tzou, “DSP-based fully digital control of a PWM DC-AC converter for AC voltage regulation” in Proc. IEEE PESC, 1995, pp. 138-144.
    [11]R. S. Lai and K. D. T. Ngo, “A PWM method for reduction of switching loss in a full-bridge inverter,” IEEE Trans. Power Electron., vol. 10, no. 3, pp. 326-332, May 1995.
    [12]A. I. Maswood, “A switching loss study in SPWM IGBT inverter,” in Proc. IEEE PECON, 2008, pp. 609-613.
    [13]F. Blaabjerg, J. K. Pedersen, P. O. Lauritzen, and C. L. Ma, “Optimum design and test of a snubberless IGBT PWM-VSI inverterbridge,” in Proc. IEEE IAS, 1994, pp. 795-804.
    [14]P. A. Dahono, A. Purwadi, and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, 1995, pp. 571-576.
    [15]J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, pp. 1659-1664.
    [16]R. W. Johnson and M. S. Moon, “DSP control of UPS inverter with over-current limit using droop method,” in Proc. IEEE PESC, 1999, pp. 552-557.
    [17]P. Goyal and R. K. Tripathi, “Circulating current reduction and power sharing control in parallel connected inverters,” in Proc. IEEE UPCON, 2017, pp. 604-609.
    [18]X. Wei, G. Zhu, J. Lu, and X. Xu, “Instantaneous current-sharing control scheme of multi-inverter modules in parallel based on virtual circulating impedance,” IET Power Electron., vol. 9, no. 5, pp. 960-968, Apr. 2016.
    [19]R. Maheshwari, G. Gohil, L. Bede, and S. M. Nielsen, “Analysis and modelling of circulating current in two parallel-connected inverters,” IET Power Electron., vol. 8, no. 7, pp. 1273-1283, July 2015.
    [20]M. Hua, H. Hu, Y. Xing, and Z. He, “Distributed control for AC motor drive inverters in parallel operation,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5361-5370, Feb. 2011.
    [21]簡正安,應用雙向轉換器建構數位控制式三相變流器之研究,國立成功大學電機工程學系碩士論文,2013年。
    [22]S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Electron., vol. 25, no. 1, pp. 140-147, Mar. 2010.
    [23]H. M. Kojabad, B. Yu, I. A. Gadouta, L. Chang, and M. Ghribi, “A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 985-993, July 2006.
    [24]S. Saha and V. P. Sundarsingh, “Novel grid-connected photovoltaic inverter,” IET PROC-C, 1996, pp. 219-224.
    [25]S. K. Chung, “Phase-locked loop for grid-connected three-phase power conversion systems,” IEEE Trans. Ind. Electron., vol. 147, no. 3, pp. 213-219, May 2000.
    [26]T. Abeyasekera, C. M. Johnson, D. J. Atkinson, and M. Armstrong, “Suppression of line voltage related distortion in current controlled grid connected inverters,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1393-1401, Nov. 2005.
    [27]J. F. Chen and C. L. Chu, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Trans. Power Electron., vol. 10, no. 5, pp. 547-558, Sep. 1995.
    [28]J. M. Guerrero, L. Hang, and J. Uceda, “Control of distributed uninterruptible power supply systems,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2845-2859, July 2008.
    [29]D. Shanxu, M. Yu, X. Jian, K. Yong, and C. Jian, “Parallel operation control technique of voltage source inverters in UPS,” in Proc. IEEE PEDS, 1999, pp. 883-887.
    [30]H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power sharing control strategies for islanding of AC microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200-215, June 2015.
    [31]T. F. Wu, Y. K. Chen, and Y. H. Huang, “3C strategy for inverters in parallel operation achieving an equal current distribution,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 273-281, Apr. 2000.
    [32]Y. Pei, G. Jiang, X. Yang, and Z. Wang, “Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS,” in Proc. IEEE PESC, 2004, pp. 2050-2053.
    [33]D. De and V. Ramanarayanan, “Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3015-3025, Aug. 2010.
    [34]J. M. Guerrero, J. Matas, L. G. D. V. D. Vicuna, M. Castilla, and J. Miret, “Wireless-control strategy for parallel operation of distributed-generation inverters,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1461-1470, Oct. 2006.
    [35]林右鎗,具電流修正控制之市電併聯型變流器,國立成功大學電機工程學系碩士論文,2010年。
    [36]林軒,具弦波調變與空間相量調變之三相變流器系統,國立成功大學電機工程學系碩士論文,2011年。
    [37]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: An overview ,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
    [38]I. B. Huang and W. S. Lin, “Harmonic reduction in inverters by use of sinusoidal pulse width modulation,” IEEE Trans. Ind. Electron., vol. 27, no. 3, pp. 201-207, Aug. 1980.
    [39]W. Lin, “A new approach to the harmonic analysis of SPWM waves,” in Proc. IEEE ICMA, 2006, pp. 390-394.
    [40]X. Y. Gao and D. Sutanto, “A method of reducing harmonic contents for SPWM,” in Proc. IEEE PEDS, 1999, pp. 156-160.
    [41]R. Wu, S. B. Dewan, and G. R. Slemon, “A PWM AC to DC converter with fixed switching frequency,” in Proc. IEEE IAS, 1988, pp. 706-711.
    [42]W. Yao, K. Wang, Z. Lu, and X. Zhu, “Digital SPWM inverter design and implementation,” in Proc. IEEE ICEICE, 2011, pp. 5847-5850.
    [43]M. Kumar and R. Gupta, “Sampling effect characterization of digital SPWM of VSI in time domain,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4150-4159, Mar. 2016.
    [44]F. Mihalic, M. Milanovic, and A. Hren, “Third harmonic elimination by SPWM for filter reduction in a over-modulated single-phase inverter,” in Proc. IEEE EDPE, 2017, pp. 37-45.
    [45]L. Haokai and Y. Jian, “Research on inverter control system based on bipolar and asymmetric regular sampled SPWM,” in Proc. IEEE ICEMI, 2013, pp. 595-598.
    [46]A. B. Afarulrazi, M. Zarafi, W. M. Utomo, and A. Zar, “FPGA implementation of Unipolar SPWM for single phase inverter,” in Proc. IEEE ICCAIE, 2010, pp. 671-676.
    [47]M. Wu and R. Zhao, “Method analysis and comparison of SVPWM and SPWM,” in Proc. IEEE CCC, 2010, pp. 3184-3187.
    [48]E. H. El-Zohri and M. A. Mosbah, “Comparison and performance analysis of unipolar and bipolar digitally-controlled single-phase inverters,” in Proc. IEEE MEPCON, 2017, pp. 1138-1144.
    [49]A. Algaddafi, K. Elnaddab, A. A. Ma’mari, and A. N. Esgiar, “Comparing the performance of bipolar and unipolar switching frequency to drive DC-AC inverter,” in Proc. IEEE IRSEC, 2016, pp. 680-685.
    [50]H. K. Yada and M. S. R. Murthy, “Phase locked loop techniques for power quality improvement in polluted grids,” in Proc. IEEE ICPEICES, 2016, pp. 1-6.
    [51]F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
    [52]羊宣銘,電網同步之鎖相迴路控制器的分析與設計,國立交通大學電控工程研究所碩士論文,2013年。
    [53]簡君哲,微電網之三相變頻器並聯控制策略研製,國立台灣科技大學電機工程學系碩士論文,2012年。
    [54]林傳昇,數位訊號處理器(DSP)簡介與應用,全華科技圖書股份有限公司,1996年。
    [55]張卿傑,手把手教你學DSP:基於TMS320F28335,北京航空航天大學出版社,2015年。

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE