簡易檢索 / 詳目顯示

研究生: 鄭偉
Cheng, Wei
論文名稱: 評估改質瀝青之拌和及滾壓溫度
Evaluation of Mixing and Compaction Temperatures of Polymer-Modified Asphalt
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 剪切稀化剪應變率拌和溫度相位角零剪力黏度
外文關鍵詞: Shear Thinning, Shear Rate, Mixing Temperature, Phase Angle, Zero Shear Viscosity
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討改質瀝青拌和與夯壓溫度,尋找決定改質瀝青拌和與夯壓溫度之方法。傳統拌和與夯壓溫度乃是根據ASTM D 2493之黏度溫度圖,分別以170±20 cP和280±30 cP作為拌和與滾壓溫度之黏度,由於未指定量測之剪應變率,往往導致改質瀝青拌和與夯壓溫度過高。本研究調查國內拌和鼓尺寸後,考量剪切稀化(Shear Thinning)特性,以質流儀(DSR)執行穩態剪切流法(SSF)與相位角法,提出複合模數法(G*)與零剪力黏度法(ZSV),比較上述等方法求得不同改質劑添加量下之拌和與夯壓溫度,分析其對現地使用之差異與實用性,最終建議穩態剪切流法作為決定改質瀝青之拌和與夯壓溫度法,此乃因試驗時間較短、分析也較容易,為較適合之方法。

    The goal of this research was to study a procedure for determining the mixing and compaction temperatures for polymer-modified asphalt, and find the method of determining the mixing and compaction temperatures. The traditional method of determining mixing and compaction temperatures are based on ASTM D 2493, with viscosity criteria of 170 ± 20 cP for mixing, and 280 ± 30 cP for compaction. The mixing and compaction temperatures for polymer-modified asphalt were too high because of we did not consider the magnitude of shear rate while measuring. In this study, considering shear thinning, the steady-state shear flow method (SSF) and phase angle method used a dynamic shear rheometer (DSR) to study after measuring the shear rate of domestic asphalt mixing plant, complex modulus method (G*) and zero shear viscosity method (ZSV) were proposed. Comparing the mixing and compaction temperatures under different amount of modifiers with which obtain from the above methods, and analyzing its usability and the divergence between practicality. Finally, we recommend steady-state shear flow method as the method to estimate the polymer-modified asphalt mixing and compaction temperatures, which is due to the test time is shorter, the analysis is also easier for the more suitable method.

    目錄 摘要 I 英文延伸摘要 II 誌謝 VI 目錄 VII 表目錄 XII 圖目錄 XIV 第一章 緒論 1.1 前言 1-1 1.2 研究動機 1-2 1.3 研究目的 1-2 1.4 研究範圍 1-3 第二章 文獻回顧 2.1 瀝青質流行為 2-1 2.2 瀝青質流性質 2-2 2.2.1 複合剪力模數 2-2 2.2.2 動態力學分析 2-4 2.3 改質瀝青 2-5 2.4瀝青拌和及夯壓溫度(Mixing and Compaction Temperatures) 2-7 2.4.1 瀝青黏度單位 2-8 2.4.2 零剪力黏度 (Zero Shear Viscosity, ZSV) 2-9 2.4.3 穩態剪切流 (Steady Shear Flow, SSF) 2-10 2.5 改質瀝青之剪應變率 2-11 2.6 滾壓溫度(Rolling Temperature) 2-15 2.7 質流性質與微觀結構之對應 2-15 2.8 以ZSV概念配合模型推估拌和溫度 2-16 第三章 研究計畫 3.1 研究流程 3-1 3.2 試驗材料 3-3 3.2.1 基底瀝青 3-3 3.2.2 改質劑 3-4 3.2.3 穩定劑 3-4 3.3 改質瀝青 3-5 3.3.1 改質瀝青拌和過程 3-5 3.3.2 改質瀝青物性試驗 3-7 3.3.3 動態剪切流變儀(Dynamic Shear Rheometer)試驗 3-12 3.4 拌和溫度決定方法 3-14 3.4.1 傳統方法 3-14 3.5 高剪應變率法(High Shear Rate, HSR) 3-15 3.6 穩態剪切流法(Steady Shear Flow, SSF) 3-16 3.7 相位角法(Phase Angle, delta) 3-16 3.8 複合模數法(Complex Modulus, G*) 3-17 3.9 零剪力黏度法(Zero Shear Viscosity, ZSV) 3-18 3.9.1 質流儀(DSR) 3-18 3.9.2 旋轉式黏度儀 3-19 3.9.3 黏度模型 3-19 3.9.4 黏度-溫度曲線 3-21 第四章 結果與討論 4.1 基本性質 4-1 4.1.1 基底瀝青物性 4-1 4.1.2 改質瀝青物性 4-1 4.1.3 黏度 4-2 4.1.4 針入度 4-4 4.1.5 軟化點 4-5 4.2 質流性質與微觀分析 4-6 4.2.1 布萊克圖與形態圖 4-6 4.2.2 質流試驗參數設定 4-9 4.3 傳統方法 - 拌和及夯實溫度 4-12 4.4 高剪應變率法(High Shear Rate, HSR) 4-13 4.4.1 剪應變率 = 500 1/s 4-13 4.4.2 剪應變率 = 50 1/s 4-16 4.5 穩態剪切流法(Steady Shear Flow, SSF) 4-18 4.6 相位角法(Phase Angle, δ delta) 4-20 4.7 複合模數法(Complex Modulus, G*) 4-22 4.8 零剪力黏度法(Zero Shear Viscosity, ZSV) 4-25 4.8.1 拌和鼓剪應變率 4-25 4.8.2 剪應變率 = 180,000 1/s 4-26 4.8.3 剪應變率 = 50 1/s 4-31 4.9 綜合比較 4-32 4.9.1 各方法差異 4-32 4.9.2 與Brookfield差異 4-33 4.9.3 比較分析 4-34 第五章 結論與建議 5.1 結論 5-1 5.2 建議 5-2 參考文獻 参-1 附錄 附-1

    劉伃芝 (2012) 瀝青膠漿質流行為與轉爐石添加於石膠泥瀝青混凝土之工程性質評估,國立成功大學土木工程研究所碩士論文,台南。
    蕭擁丁 (2017) 高分子改質瀝青型態對工程性質之影響,國立成功大學土木工程研究所碩士論文,台南。
    Asphalt Institute (2015). Asphalt Mix Design Methods, MS-2, 7th Edition, Kentucky.
    Airey, G.D. (1997). Rheological Characteristics of Polymer Modified and Aged Bitumens, Ph.D. thesis, Department of Civil Engineering, University of Nottingham, United Kingdom.
    Airey, G.D. (2003). “Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens,” Fuel, Vol. 82, pp.1709-1719.
    American Society for Testing and Materials (2016). “Standard Viscosity-Temperature Chart for Asphalt,” ASTM D2493, West Conshohocken, Pennsylvania.
    American Society for Testing and Materials (2013). “Standard Test Method for Saybolt Viscosity,” ASTM D88-07, West Conshohocken, Pennsylvania.
    American Association of State and Highway Transportation Officials (2015). “Standard Method of Test for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus,” AASHTO T245, Washington, D.C.
    American Association of State and Highway Transportation Officials (2015). “Standard Method of Test for Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor,” AASTTO T312, Washington, D.C.
    Anderson, D.A., Christensen, D.W., Bahia, H., Dongre, R., Sharma, M.G., and Antle,.C.E. (1994). Binder Characterization and Evaluation, Strategic Highway Reasarch Program, Washington, D.C., Vol.3, pp.44-45.
    Brown, E.R., Kandhal, P.S., Roberts, F.L., Kim, Y.R., Lee, D.Y., and Kennedy, T.W. (2009). Hot Mix Asphalt Materials, Mixture Design, and Construction, NAPA Reasearch and Education Foundation, Lanham, Maryland, pp.570-596.
    Geng, H., and Li, L. (2016). “A Practical Shear Rate on Modified Asphalt Binders for Optimum Compaction Temperature Determination in Asphalt Mixture Design,” Materials and Structures, vol.50:61.
    Khatri, A., Bahia, H., and Hanson, D. (2001). “Mixing and Compaction Temperatures for Modified Binders using the Superpave Gyratory Compactor,” Journal of the Association of Asphalt Paving Technologists, Vol. 70, pp.368-402.
    Lu, X.H., Soenen, H. and Redelius, P. (2011) “Rheological Characterization of Polymer Modified Bitumens”, Annual Transactions of the Nordic Rheology Society, Vol. 19
    Reinke, G. (2003). “Determination of Mixing and Compaction Temperature of PG Binders Using a Steady Shear Flow Test,” presentation made to the Superpave Binder Expert Task Group.
    Robinson, H.L. (2004) Polymers in Asphalt, Rapra Review Reports, Vol. 15, Number 11, pp.19-21
    Saboo, N. and Kumar, P. (2015) “Study of Flow Behavior for Predicting Mixing Temperature of Bitumen”, Construction and Building Materials, Vol. 87, pp.38-44
    West, R.C., Wastson, D.E., Turner, P.A., and Casola, J.R. (2010). Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt, National Cooperative Highway Research Program Report 648, Transportation Research Board, Washington, D.C.
    Yildirim, Y., Soaimanian, M., and Kennedy, T.W. (2000). “Mixing and Compaction Temperatures for Hot Mix Asphalt Concrete,” South Central Superpave Center Research Report Number 1250-5, Texas Department of Transportation, Austin, Texas.
    Zhu, J., Birgisson, B., and Kringos, N. (2014) “Polymer Modification of Bitumen: Advances and Challenges,” European Polymer Journal, Vol. 54, pp.18-38

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE