簡易檢索 / 詳目顯示

研究生: 吳冠慶
Wu, Kuan-Ching
論文名稱: 熱導型正型感光性聚苯噁唑/氮化硼奈米複合材料之合成與性質研究
Synthesis and Properties of Thermally Conductive Positive Photosensitive Polybenzoxazole/Boron Nitride Nanocomposites
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 感光性聚苯噁唑奈米複合材料氮化硼
外文關鍵詞: Photosensitive Poly(benzoxazole)s (PSPBOs), Nanocomposites, Boron nitride
相關次數: 點閱:65下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將奈米級氮化硼均勻分散於Photosensitive Polybenzoxazole (PSPBO)前驅物中,製備出熱導型正型鹼性水溶液顯影的耐高溫感光性材料。製備方法是利用2,2-bis(3-amino-4-hydroxyphenol)hexafiouoropropane(BisAPAF) 作為二胺單體,isophthaloyl chloride (IC)和4,4’-oxydibenzoyl chloride (ODC) 作為二醯氯單體進行低溫共聚反應,形成聚苯噁唑(Polybenzoxazole ; PBO) 之前驅物-聚羥醯胺 (PHA),再使用 1,2-naphthoquinonediazide-5-sulfonyl chloride (DNQ-5)對聚羥醯胺進行改質,合成出感光性聚羥醯胺,再添加感光材料PAC-TPA520作為溶解抑制劑,並混摻奈米氮化硼於其中,最後以350oC高溫閉環即可製備出熱導型正型感光性聚苯噁唑/氮化硼奈米複合材料。
    此外使用3-mercaptopropionic acid (MPA)作為改質劑對氮化硼奈米粒子進行表面改質,增加奈米氮化硼在聚苯噁唑基材中的分散性。結果顯示隨著氮化硼添加量的增加熱傳導係逐漸上升,當添加量增加到30 wt%時,聚苯噁唑/氮化硼奈米複合材料的熱傳導係數可增加至0.72 Wm-1K-1,微影成像圖案轉移的解析度可達30 μm。此外聚苯噁唑/氮化硼奈米複合材料之玻璃轉移溫度為325oC,熱裂解溫度為501oC,顯示具有良好的耐熱性。

    A thermally conductive photoresist based on a dispersion of nano-sized hexagonal boron nitride (h-BN) in a positive-tone photosensitive poly(benzoxazole) (PSPBO) precursor was developed in this work. 3-Mercaptopropionic acid (MPA) was used as the surfactant to modify the h-BN surface in order to improve the dispersion of h-BN in the polymer. The PSPBO/BN nanocomposites exhibited different thermal conductivities in the h-BN content. The thermal conductivity of the PSPBO/BN nanocomposite was as high as 0.71 W/m-K for a mixture containing 30 wt% of modified BN fillers in the poly(benzoxazole) matrix. The PSPBO/BN30 resist exhibited a sensitivity of 878 mJ/cm2 and a contrast of 1.56. The patterns were obtained after curing at 350 oC with a resolution of 30 μm. The PSPBO/BN nanocomposites also showed excellent thermal properties. When the loading level of modified BN reached 30 wt%, the 5% weight loss temperature was 501 oC, and the glass transition temperature was 325 oC.

    摘要 I Extended Abstract II 誌謝 VIII 總目錄 IX 圖目錄 XV 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 實驗回顧與原理 4 2-1 聚苯噁唑(Polybenzoxazole;PBO)之介紹 4 2-1-1耐高溫高分子之發展與應用 4 2-1-2聚苯噁唑之發展與應用 5 2-2感光聚苯噁唑(Photosensitive Polybenzoxazole)之介紹 8 2-2-1溶解抑制型正型感光聚苯噁唑 9 2-2-2化學增幅型感光聚苯噁唑 10 2-2 有機/無機奈米複合材料 11 2-2-1有機/無機奈米複合材料之簡介 11 2-2-2有機/無機奈米複合材料之製備方法[48] 12 2-2-3無機奈米填充材料改質方法[24] 13 2-2-4有機/無機奈米複合材料之特性 15 2-3 微影成像(Microlithography)技術及原理[52-55] 16 2-3-1表面清洗 16 2-3-2矽晶片預處理 17 2-3-3上光阻 18 2-3-4軟烤 19 2-3-5曝光 20 2-3-6光源與解析度 22 2-3-7曝後烤 22 2-3-8顯影 23 2-3-9硬烤 23 2-3-10蝕刻 23 2-3-11光阻剝除 24 2-5 光阻特性 25 2-5-1特性曲線 25 2-5-2感度 25 2-5-3對比 25 2-5-4解析度 26 第三章 實驗步驟 27 3-1實驗藥品與儀器 27 3-1-1 實驗用藥品 27 3-1-2 實驗儀器 29 3-2實驗步驟 30 3-2-1 聚苯噁唑(PBO)前驅物-聚羥醯胺(PHA)之合成 30 3-2-2 DNQ保護聚羥醯胺(PHA)之合成 33 3-2-3 氮化硼之表面改質 36 3-2-4 導熱感光聚苯噁唑複合材料薄膜的製備 38 3-3結構鑑定與分析 39 3-3-1 固有黏度量測 (Inherent viscosity) 39 3-3-2 紅外線吸收光譜分析 (FT-IR) 39 3-3-3 熱傳導性質分析 40 3-3-4 核磁共振光譜分析 (1H-NMR) 41 3-3-5 熱重損失分析 (TGA) 41 3-3-6 凝膠滲透層析儀測定 (GPC) 42 3-3-7 熱機械分析 (TMA) 43 3-3-8 X光繞射分析 (XRD) 43 3-3-9 吸濕性測試 44 3-3-10 溶解度測試 44 3-4光學微影製程性質分析 45 3-4-1 矽晶片表面處理 45 3-4-2 配製光阻劑 45 3-4-3 旋轉塗佈 46 3-4-4 軟烤 46 3-4-5 曝光 46 3-4-6 顯影 46 3-4-7 前驅物環化處理 47 3-4-8 特性曲線製作 47 3-4-9 溶解速率的計算 48 3-4-10 圖案觀察 48 第四章 結果與討論 49 4-1聚苯噁唑(PBO)及其前驅物-聚羥醯胺(PHA)之合成與性質鑑定 49 4-1-1 聚苯噁唑(PBO)及其前驅物-聚羥醯胺(PHA)之合成 49 4-1-2 聚羥醯胺(PHA)之性質鑑定 50 4-1-3 聚苯噁唑(PBO)之性質鑑定 54 4-2 DNQ保護聚羥醯胺(PHA)之合成與性質鑑定 56 4-2-1 DNQ保護聚羥醯胺(DNQ-capped PHA)之合成 57 4-2-2 DNQ保護聚羥醯胺(DNQ-capped PHA)之鑑定 57 4-2-3 感光基對溶解速率的影響 59 4-3 氮化硼表面改質之合成與性質鑑定 63 4-3-1 氮化硼表面改質之合成 63 4-3-2 氮化硼表面改質之鑑定 64 4-4 導熱感光聚苯噁唑複合材料薄膜之性質研究 67 4-4-1 導熱感光聚苯噁唑複合材料薄膜之熱性質分析 67 4-4-2 導熱感光聚苯噁唑複合材料薄膜之溶解度分析 70 4-4-3 導熱感光聚苯噁唑複合材料薄膜之微影製程分析 71 4-4-4 導熱感光聚苯噁唑複合材料薄膜之附著性測試 77 4-4-5 導熱感光聚苯噁唑複合材料薄膜之熱傳導性質分析 79 第五章 結論 80 參考文獻 81

    [1] P. Ganrou, W. B. Rogers, D. M. Scheck, A. J. Strandjord, Y. Ida, and K. Ohba, "Stress-buffer and passivation processes for Si and GaAs IC's and passive components using photosensitive BCB: Process technology and reliability data," IEEE transactions on advanced packaging, vol. 22, pp. 487-498, 1999.
    [2] G. Maier, S. Banerjee, J. Haußmann, and R. Sezi, "High-temperature polymers for advanced microelectronics," High Performance Polymers, vol. 13, pp. S107-S116, 2001.
    [3] M. E. Mills, P. Townsend, D. Castillo, S. Martin, and A. Achen, "Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material," Microelectronic Engineering, vol. 33, pp. 327-334, 1997.
    [4] K. Yamamoto and T. Hirano, "Application for WLP at positive working photosensitive polybenzoxazole," Journal of Photopolymer Science and Technology, vol. 15, pp. 173-176, 2002.
    [5] J. Yota, "Interlevel dielectric processes using PECVD silicon nitride, polyimide, and polybenzoxazole for GaAs HBT technology," Journal of The Electrochemical Society, vol. 156, pp. G173-G179, 2009.
    [6] S. L.-C. Hsu and W.-C. Chen, "A novel positive photosensitive polybenzoxazole precursor for microelectronic applications," Polymer, vol. 43, pp. 6743-6750, 2002.
    [7] M. Ghosh, Polyimides: fundamentals and applications: CRC Press, 1996.
    [8] H. Ahne, E. Kuhn, and R. Rubner, "Heat resistant positive resists containing polyoxazoles," ed: Google Patents, 1982.
    [9] 李偉明, "奈米塑膠的性能與應用 " 高分子工業, pp. 46-51, 2009.
    [10] X. Huang, P. Jiang, and T. Tanaka, "A review of dielectric polymer composites with high thermal conductivity," IEEE Electrical Insulation Magazine, vol. 27, 2011.
    [11] Y. Shimazaki, F. Hojo, and Y. Takezawa, "Highly Thermoconductive polymer nanocomposite with a nanoporous α-Alumina sheet," ACS applied materials & interfaces, vol. 1, pp. 225-227, 2008.
    [12] P. Bujard, G. Kuhnlein, S. Ino, and T. Shiobara, "Thermal conductivity of molding compounds for plastic packaging," in Electronic Components and Technology Conference, 1994. Proceedings., 44th, 1994, pp. 159-163.
    [13] G. Droval, J. F. Feller, P. Salagnac, and P. Glouannec, "Thermal conductivity enhancement of electrically insulating syndiotactic poly (styrene) matrix for diphasic conductive polymer composites," Polymers for advanced technologies, vol. 17, pp. 732-745, 2006.
    [14] Y. Liao, X. Wu, H. Liu, and Y. Chen, "Thermal conductivity of powder silica hollow spheres," Thermochimica acta, vol. 526, pp. 178-184, 2011.
    [15] M. Hussain, Y. Oku, A. Nakahira, and K. Niihara, "Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites," Materials Letters, vol. 26, pp. 177-184, 1996.
    [16] W. Zhou, C. Wang, T. Ai, K. Wu, F. Zhao, and H. Gu, "A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity," Composites Part A: Applied Science and Manufacturing, vol. 40, pp. 830-836, 2009.
    [17] H. He, R. Fu, Y. Shen, Y. Han, and X. Song, "Preparation and properties of Si3N4/PS composites used for electronic packaging," Composites science and technology, vol. 67, pp. 2493-2499, 2007.
    [18] Y. Zhou, H. Wang, L. Wang, K. Yu, Z. Lin, L. He, et al., "Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging," Materials Science and Engineering: B, vol. 177, pp. 892-896, 2012.
    [19] S. Kume, I. Yamada, K. Watari, I. Harada, and K. Mitsuishi, "High‐Thermal‐Conductivity AlN Filler for Polymer/Ceramics Composites," Journal of the American Ceramic Society, vol. 92, 2009.
    [20] H. Shen, J. Guo, H. Wang, N. Zhao, and J. Xu, "Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure," ACS applied materials & interfaces, vol. 7, pp. 5701-5708, 2015.
    [21] K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, et al., "Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces," Journal of Materials Chemistry, vol. 20, pp. 2749-2752, 2010.
    [22] H. J. Ahn, Y. J. Eoh, S. D. Park, and E. S. Kim, "Thermal conductivity of polymer composites with oriented boron nitride," Thermochimica Acta, vol. 590, pp. 138-144, 2014.
    [23] M. T. Huang and H. Ishida, "Investigation of the boron nitride/polybenzoxazine interphase," Journal of Polymer Science Part B: Polymer Physics, vol. 37, pp. 2360-2372, 1999.
    [24] M. Rong, M. Zhang, and W. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review," Materials science and technology, vol. 22, pp. 787-796, 2006.
    [25] K. Horie, Photosensitive polyimides: fundamentals and applications: Technomic, 1995.
    [26] T. Yamashita, Photosensitive Polyimides: Fundamentals and Applications: Routledge, 2017.
    [27] K.-i. Fukukawa and M. Ueda, "Recent development of photosensitive polybenzoxazoles," Polymer journal, vol. 38, p. 405, 2006.
    [28] B. K. Clark, C. D. Dean, and R. I. Maxwell, "Polybenzoxazoles," ed: Google Patents, 1959.
    [29] J. F. Wolfe and F. Arnold, "Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2, 6-benzobisoxazole units in the main chain," Macromolecules, vol. 14, pp. 909-915, 1981.
    [30] R. A. Johnson and L. J. Mathias, "Synthesis and characterization of thianthrene‐containing poly (benzoxazole) s," Journal of Polymer Science Part A: Polymer Chemistry, vol. 33, pp. 1901-1906, 1995.
    [31] Y. Shibasaki, F. Toyokawa, S. Ando, and M. Ueda, "Highly transparent photosensitive polybenzoxazole: poly (o-hydroxy amide) derived from 4, 4′-(hexafluoroisopropylidene) bis (o-aminophenol) and o-substituted dicarboxylic acid chlorides," Polymer journal, vol. 39, p. 81, 2007.
    [32] T. Yamaoka, N. Nakajima, K. i. Koseki, and Y. Maruyama, "A study of novel heat‐resistant polymers: Preparation of photosensitive fluorinated polybenzoxazole precursors and physical properties of polybenzoxazoles derived from the precursors," Journal of Polymer Science Part A: Polymer Chemistry, vol. 28, pp. 2517-2532, 1990.
    [33] L. M. Minsk and W. P. Van Deusen, "Photomechanical resist," ed: Google Patents, 1954.
    [34] L. Minsk, J. Smith, W. Van Deusen, and J. Wright, "Photosensitive polymers. I. Cinnamate esters of poly (vinyl alcohol) and cellulose," Journal of Applied Polymer Science, vol. 2, pp. 302-307, 1959.
    [35] R. E. Kerwin and M. R. Goldrick, "Thermally stable photoresist polymer," Polymer Engineering & Science, vol. 11, pp. 426-430, 1971.
    [36] R. Rubner, W. Bartel, and G. Bald, "‘Production of highly heatresistant film patterns from photoreactive polymeric precursors. Part 2. Polyimide film patterns," Siemens Forsch.-Entwicklungsber, vol. 5, pp. 235-239, 1976.
    [37] R. Rubner, H. Ahne, E. Kuhn, and G. Kolodziej, "PHOTO-POLYMER-DIRECT WAY TO POLYIMIDE PATTERNS," Photographic Science and Engineering, vol. 23, pp. 303-309, 1979.
    [38] T. Ogura, K.-t. Yamaguchi, Y. Shibasaki, and M. Ueda, "Photosensitive poly (benzoxazole) based on poly (o-hydroxy amide), dissolution inhibitor, thermoacid generator, and photoacid generator," Polymer journal, vol. 39, p. 245, 2007.
    [39] R. Rubner, "Photoreactive polymers for electronics," Advanced Materials, vol. 2, pp. 452-457, 1990.
    [40] K. Mizoguchi, T. Higashihara, and M. Ueda, "An alkaline-developable, negative-working photosensitive polybenzoxazole based on poly (o-hydroxyamide), a vinyl sulfone-type cross-linker, and a novel photobase generator," Macromolecules, vol. 42, pp. 3780-3787, 2009.
    [41] A. A. Naiini, D. B. Powell, D. W. Racicot, I. y. Rushkin, and W. D. Weber, "Positive photosensitive polybenzoxazole precursor compositions," ed: Google Patents, 2010.
    [42] H. Ahne, R. Rubner, and R. Sezi, "Photopatternable insulating materials," Applied surface science, vol. 106, pp. 311-315, 1996.
    [43] K. Ebara, Y. Shibasaki, and M. Ueda, "Chemically Amplified Photosensitive Poly (benzoxazole)," Journal of Photopolymer Science and Technology, vol. 16, pp. 287-292, 2003.
    [44] K. Takeshi, K.-i. Okuyama, Y. Ohba, and M. Ueda, "New Negative-Type Photosensitive Poly (phenylene ether): 2 Poly (2-hydroxy-6-methylphenol-co-2, 6-dimethylphenol), a Cross-Linker, and a Photoacid Generator," Journal of Photopolymer Science and Technology, vol. 13, pp. 345-349, 2000.
    [45] K.-i. Fukukawa, Y. Shibasaki, and M. Ueda, "Negative-type chemically amplified photosensitive semi-alicyclic polybenzoxazole via acid-catalyzed electrophilic substitution," Polymer journal, vol. 37, p. 74, 2005.
    [46] 蔡宗燕, "奈米黏土-高分子複合材料之發展與應用," 奈米技術專刊, pp. 126-133, 2001.
    [47] K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, "Synthesis and properties of polyimide–clay hybrid," Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, pp. 2493-2498, 1993.
    [48] 廖建勛, "奈米高分子複合材料," 材料工業, pp. 109-115, 1997.
    [49] D. M. Delozier, R. Orwoll, J. Cahoon, N. Johnston, J. Smith Jr, and J. Connell, "Preparation and characterization of polyimide/organoclay nanocomposites," Polymer, vol. 43, pp. 813-822, 2002.
    [50] Z.-M. Liang, J. Yin, and H.-J. Xu, "Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers," Polymer, vol. 44, pp. 1391-1399, 2003.
    [51] J. H. Chang, K. M. Park, D. Cho, H. S. Yang, and K. J. Ihn, "Preparation and characterization of polyimide nanocomposites with different organo‐montmorillonites," Polymer Engineering & Science, vol. 41, pp. 1514-1520, 2001.
    [52] 龍文安, 積體電路微影製程: 高立出版社, 1998.
    [53] 蕭宏, 半導體製程技術導論: 歐亞書局有限公司, 2001.
    [54] 莊達人, VLSI製造技術: 高立出版社, 2001.
    [55] M. Quirk and J. Serda, Semiconductor manufacturing technology vol. 1: Prentice Hall Upper Saddle River, NJ, 2001.
    [56] H. Zhou, Y. Zou, and Y. Song, "Effects of diazonaphthoquinone groups on photosensitive coating," Journal of applied polymer science, vol. 117, pp. 2360-2365, 2010.
    [57] C. G. Willson, "Organic resist materials—theory and chemistry," ed: ACS Publications, 1983.
    [58] C. L. Henderson, S. A. Scheer, P. C. Tsiartas, B. M. Rathsack, J. P. Sagan, R. R. Dammel, et al., "Modeling parameter extraction for DNQ-novolak thick film resists," in Advances in Resist Technology and Processing XV, 1998, pp. 256-268.
    [59] T. Omote, H. Mochizuki, K. i. Koseki, and T. Yamaoka, "Fluorine-containing photoreactive polyimide. 7. Photochemical reaction of pendant 1, 2-naphthoquinone diazide moieties in novel photoreactive polyimides," Macromolecules, vol. 23, pp. 4796-4802, 1990.
    [60] Y.-S. Ye, Y.-C. Yen, C.-C. Cheng, Y.-J. Syu, Y.-J. Huang, and F.-C. Chang, "Polytriazole/clay nanocomposites synthesized using in situ polymerization and click chemistry," Polymer, vol. 51, pp. 430-436, 2010.

    下載圖示 校內:2023-08-17公開
    校外:2023-08-17公開
    QR CODE