| 研究生: |
蔡長展 Tsai, Charng-Jarn |
|---|---|
| 論文名稱: |
瀝青流變行為對鋪面車轍變形之影響 This research was aimed to determine the relationship between pavement performance and rheological properties of asphalt binders. Fresh and aged asphalts were tested by the rheometer to obtain the viscoelastic properties at different temperatures and loading times. A simple and practical viscoelastic model was developed in this study to define the rheological parameters. Master curves were constructed by using the time-temperature superposition principle, and a model in a parabolic shape was found to describe the behavior of asphalt binders adequately. The dissipated energy, Wd, was presented for asphalt binders in this study, and the derived factor, G*/sind, was shown to be less desirable to explain the viscoelastic properties of asphalt binders. The rheological parameters, Wd, was then recommended as a specification value for controlling permanent deformation of pavements. Adequate pavement predictive data was necessary. It could give engineers to have message about pavement repairing. So the serious damage would not happen in the road. This research was to rate the actual road performance. Experiment data included 25 or 40℃ residual modulus, indirect tensile test, marshell stability test. After a road test, the data was taken to be analyzed by regression. Referring to laboratory results, equations to pavement performance were established by the computer program and statistic method. |
| 指導教授: |
蔡攀鰲
Tsai, Pan-Aur 陳建旭 Chen, Jian-Shiuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 路面績效 、主曲線 、粘彈性 、車轍變形 、改質瀝青 、溫感性 |
| 外文關鍵詞: | pavement rutting, viscoelastic properties, master curve, rheological parameter of asphalt |
| 相關次數: | 點閱:110 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區道路總面積百分之九十七為瀝青混凝土路面,近幾年隨著重大交通建設快速成長,道路面積急速增加,在路面交通量倍增及氣候高溫多雨等環境因素影響下,造成路面破壞頻繁,鋪面壽命往往比當初所設計的使用年限低了許多,為減少路面因交通荷重增加及夏季高溫現象所造成之車轍變形現象,近幾年來在部份市區道路與國道高速公路上乃試用黏滯度較高之一般瀝青(Asphalt Cement,AC)或改質瀝青進行鋪築。
對於材料的選用,早期使用之針入度規範逐漸被AC黏度規範取代,但AC粘度規範試驗成果仍無法完全呈現路面於溫度變化下之受力行為反應,與路面績效尚無直接關係,本研究以流變儀量測瀝青的流變性質可以彌補傳統試驗值不足之處,而所得流變數值經過整理分析後,更可解釋瀝青之黏彈特性,易為鋪面工程師所接受。利用流變試驗結果,建立簡單實用的流變數學模式模擬瀝青材料之工程特性,可以提昇路面材料設計準確性,減少維修費用並延長使用年限。
瀝青材料選用AC-20、AC-30、改質A型及改質B型等四種進行試驗,以時間溫度重疊原理為基礎,建立材料流變行為之主曲線,利用合理之數學模式模擬主曲線試驗數值,並依據架構之數學模式特性,區分不同溫度範圍內之試驗值,共分為流體流動區、黏彈性區及玻璃區等;流體流動區解釋路面高溫車轍變形破壞現象,黏彈性區解釋路面常溫疲勞破壞現象,玻璃區解釋路面低溫破壞現象。主曲線之二次拋物線函數中粘彈性區設定於瀝青進入玻璃區及流動區之頻率區間,其黏彈區間大小代表材料溫感性,與二次項係數(a)成正比關係,因此利用a值可表示出瀝青之溫感性。
瀝青改質劑種類繁多,本研究採用市面廣泛使用之高分子材料苯乙烯-丁二烯-苯乙烯(styrene-butadiene-styrene,SBS)作為改質材料,隨SBS添加量之增加,複合模數(G*)值可以有效提昇並加強瀝青之工程性質,在材料品質控制上,為防止相分離情形產生,配合本研究所選用之基底瀝青,SBS添加量建議在5%以下。從粘彈性理論推導結果,瀝青在高溫時的工程特性較適合用能量消散之概念解釋,因此採用瀝青流變試驗中消散能量(Wd)可為分析路面車轍變形績效之適當指標,而Wd值採用接近於主曲線流體流動區之頻率2 rad/sec,較符合路面交通環境現況,與輪跡變形試驗成果相關性較佳。
隨著路面壓密及瀝青材料日漸老化等因素,現地道路測試結果顯示,四種瀝青混凝土材料強度大致隨舖築後時間增加而增加,利用回彈模數值(Mr)、間接張力強度值、縱斷面平坦度值(PrI)、橫斷面車轍值,彭科曼樑及FWD撓度值等道路試驗資料與電腦程式分析驗證後,由程式所發展之材料係數預測模式適用於台灣地區路面材料。所建立之車轍迴歸預測模式可以得知鋪面在完工開放交通後任何時間的永久變形績效,適時提供道路主管機關掌握維修時機以減少路面維修成本。
This research was aimed to determine the relationship between pavement performance and rheological properties of asphalt binders. Fresh and aged asphalts were tested by the rheometer to obtain the viscoelastic properties at different temperatures and loading times. A simple and practical viscoelastic model was developed in this study to define the rheological parameters. Master curves were constructed by using the time-temperature superposition principle, and a model in a parabolic shape was found to describe the behavior of asphalt binders adequately. The dissipated energy, Wd, was presented for asphalt binders in this study, and the derived factor, G*/sind, was shown to be less desirable to explain the viscoelastic properties of asphalt binders. The rheological parameters, Wd, was then recommended as a specification value for controlling permanent deformation of pavements.
Adequate pavement predictive data was necessary. It could give engineers to have message about pavement repairing. So the serious damage would not happen in the road. This research was to rate the actual road performance. Experiment data included 25 or 40℃ residual modulus, indirect tensile test, marshell stability test. After a road test, the data was taken to be analyzed by regression. Referring to laboratory results, equations to pavement performance were established by the computer program and statistic method.
交通部統計處,交通統計要覽,網路資料:http:/www.motc.gov.tw/service/ (2001)。
交通部台灣區國道高速公路局南區工程處,「中山高速公路瀝青混凝土改質瀝青應用技術之研究」,台南 (1999)。
交通部科技顧問室,「台灣柔性路面破壞與瀝青材料性質關係之研究),台北 (1999)。
李秀山,「利用再生處理工法作舖面維修之展望」,第一屆舖面再生學術研討會論文集,台南,第289-306頁 (1993)。
林志棟,王劍能,王盈傑,「台灣地區瀝青混凝土路面品質管理系統之研究」,國立中央大學土木工程研究所公路工程技術移轉系列叢書,中壢,第31-34頁 (2000)。
林志憲,「解析方法應用於柔性鋪面設計」,國立成功大學研究所碩士論文,台南,第2-8~2-9頁 (1999)。
周家蓓,「以行進間測重(WIN)逕行取締超載規範與提昇商車營運績效之研究」,交通部運輸研究所,臺北 (1999)。
胡德,高分子物理與機械性質(上),渤海堂文化公司 (1994)。
陳建旭,蔡攀鰲,蔡長展,「鋪面車轍與瀝青流變參數之關係研究」,中國土木水利工程學刊,第十二卷第四期,第785-794頁 (2000)。
陳建旭,蔡攀鰲,蔡長展,廖敏志,「高分子添加量對瀝青工程性質之影響」,中國材料科學學刊,第三十三卷第三期,第125-135頁 (2001)。
陳順宇,鄭碧娥,「統計學」,華泰書局,第18-24 ~ 18-25頁 (1998)。
陳順宇,鄭碧娥,「STATISTICA手冊(I)基本統計」,華泰書局,第7-3 ~ 7-19頁 (1999)。
蔡信輝,「探討改質瀝青之最佳含量及研擬規範」,國立成功大學碩士論文,台南,第2-8~2-9頁 (2001)。
Al-Dubabe, I.A., Al-Abdul Wahhab, H.I., Asi, I.M. and Ali, M.F., “Polymer Modification of Arab Asphalt,” Journal of Materials in Civil Engineering, Aug., pp.161-167 (1998).
Ali, N., Chan, J.S., Potyondy, A.J., Bushman, R. and Bergan, A.T., “Mechanistic Evaluation of Asphalt Concrete Mixtures Containing Reclaimed Roofing Materials,” Transportation Research Record Vol.1515, pp.28-36 (1995).
Anderson, D.A. and Kennedy, T.W., “Development of SHRP Binder Specification,” Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.481-507 (1992).
Anderson, D.A., Christensen, D.W. and Bahia, H., “Physical Properties of Asphalt Cement and the Development of Performance-Related Specification,” Journal of the Association of Asphalt Paving Technologists, Vol.60, pp.437-475 (1991).
Asphalt Institute (AI), Performance Graded Asphalt Binder Specification and Test, Asphalt Institute Superpave Series, No.1(SP-1) (1994)
Bahia, H.U. and Anderson, D.A., “Strategic Highway Research Program Binder Rheological Parameters:Background and Comparison with Convertional Properities,” Transportation Reasearch Record, Vol.1488, pp.32-39 (1995).
Bahia, H.U. and Anderson, D.A., “Why Are They Required and How Do They Compare to Conventional Properties,” The New Proposed Rheological Properities of Asphalt Binders, ASTM STP1241, pp.481-507 (1995).
Bahia, H.U., Hislop, W.P. and Zhai, H., “Classification of Asphalt Binders Into Simple and Complex Binders,” Journal of the Asphalt Paving Technologists, Vol.67, pp. 1-41 (1998).
Blanco, R., Rodriguez, R., Garcia-Garduno, M. and Castano, V.M., “Rheological Properties of Styrene-Butadiene Copolymer- reinforced Asphalt,” Journal of Applied Science, Vol.61, pp.1493- 1501 (1996).
Carreau, P.J., Bousmina, M. and Bonniot, F., “The Viscoelastic Properties of Polymer-Modified Asphalts,” The Canadian Journal of Chemical Engineering, Vol.78, pp.495-503 (2000).
Chen, J.S., “Modeling Linear Viscoelastic Propertion of Asphalt Binder,” Journal of Materials, Concretal Structure and Pavements, JSCE, No.544/V-32, pp.257-263 (1996).
Chen, J.S. and Tsai, C.J., “Relating Tensile, Bending, and Shear Test Data of Asphalt Binders to Pavement Performance,” Journal of Materials Engineering and Performance, Vol.7(6), pp.805-811 (1998).
Chen, J.S. and Tsai, C.J., “Development of a Binder Specification Based on Dissipated Energy,” Journal of the Eastern Asia Society for Transportation Studies, Vol.3(3), pp.145-158 (1999).
Chen, D.H. and Hugo, F., “Comparison of Two Pavement Rehabilitation Strategies,” Journal of Transportation Engineering, pp.47-58 (2001).
Christensen, D.W. and Anderson, D.A., “Interpretation of Dynamic Mechanical Test Data For Paving Grade Asphalt Cements,” Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.67-116 (1992).
Dickinson, E.J and Witt, H.P., “The Dynamic Shear Modulus of Paving Asphalts as a Function of Frequency,” Transactions of the Society of Rheology, Vol.18, No.4, pp.591-606 (1974).
Didier, J., Gerard, J.F., Claudy, P., Letoffe, J.M., Planche, J.P. and Dider, M., “A Structure-Related Model to Describe Asphalt Linear Viscoelasticity,” Journal of Rheology, Vol.40(5), pp.813-836 (1996).
Dobson, G.R., “On the Development of Rational Specifications for the Rheological Properties of Bitumens,” Journal of the Institute of Petroleum, Vol.58, No.559, pp.14-24 (1972).
Ferry, J.D., Viscoelastic Properties of Polymers, John & Willey, 3rd Edition, pp.1-30 (1980).
Fleckenstein, L.J., Mahboub, K. and Allen, D.L., “Performance of Polymer Modified Asphalt Mixes in Kentucky,” Polymer Modified Asphalt Binders, ASTM STP1108, pp.173-185 (1992).
Freddy ,L.R., Kandhal, P.S., Brown, E.R., Lee, D.Y. and Kennedy, T,W., Hot Mix Asphalt Materials, and Construction, NAPA Research and Education Foundation, 2rd Edition, pp.302-303 (1996).
Heukelom, W., “An Improved Method of Characterizing Asphaltic Binder with the Aid of Their Mechanical Properties,” Proceedings of the Association of Asphalt Paving Technologists, Vol.42, pp.67-98 (1973).
Jongepier, R. and Kuilman, B., “Characteristics of the Rheology of Bitumens,” Proceedings of Association of Asphalt Paving Technologists, Vol.38, pp.98-122 (1968).
Kenis, W. J., Vesys Users Manul, FHWA-RD-77-154, pp.23-40 (1978).
Khattak, M.J. and Baladi, G.Y., “Fatigue and Permanent Deformation Models for Polymer-Modified Asphalt Mixtures,” Transportation Research Board Annual Meeting, No.01-2813, on CD-ROM (2001).
King, G.N. and King, H.W., Harders, O., Chavenot, P., and Planchi, J.P., “Influence of Asphalt Grade and Polymer Concentration on the High Temperature Performance of Polymer Modified Asphalt,” Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.29-65 (1992).
Khosla, N.P. and Zahran, S.Z., “A Mechanistic Evaluation of Mixes Containing Conventional and Polymer Modified (Styrelf) Asphalts,” Journal of the Association of Asphalt Paving Technologists , Vol.58, pp.274-302 (1989).
Little, D.N., “Analysis of the Influence of Low Density Polyethylene Modification (Novophalt) of Asphalt Concrete on Mixture Shear Strength and Creep Deformation Potential,” Polymer Modified Asphalt Binders , ASTM STP1108, pp.186-202 (1992).
Ludfi, D. and Freddy, L.R., “Performance Production of Louisiana ALF Test Section, ” Transportation Research Board Annual Meeting, No.00-0138, on CD-ROM (2000).
Madapati, R.R., Lee, K.W., Manning, F.J. and Franco, C.A., “Feasibility of Crumb Rubber Use for Asphalt Pavement Construction,” Transportation Research Record, Vol.1530, pp.64-71 (1996).
Marateanu, M. and Anderson, D.A., “Time-Temperature Dependency of Asphalt Binder-An Improved Model,” Journal of the association of Asphalt Paving Technologists, Vol.65, pp.408-448 (1996).
Mogawer, W.S. and Stuart, K.D., “Effect of Coarse Aggregate Content on Stone Matrix Asphalt Rutting and Draindown,” Transportation Research Record 1492, pp.1-12, (1995).
Panda, M. and Mazumdar, M., “Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137 (1999).
Parker, F. and Brown, E.R., “Effects of Aggregate Modification (Novophalt) of Asphalt Concrete on Mixture Shear Strength and Creep Deformation Potential,” Polymer Modified Asphalt Binders , ASTM STP1108, pp.186-202 (1992).
Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee, D.Y. and Kennedy, T.W., Hot Mix Asphalt Materials, Mixture Design, and Construction (Second Edition), NAPA Education Foundation, Lanham, Maryland (1996).
Rogge, D.F., Terrel, R.L. and George, A.J., “Polymer Modified Hot Mix Asphalt-Oregon Experience,” Polymer Modified Asphalt Binders , ASTM STP1108, pp.151-172 (1992).
Sebaaly, P.E., Qi, X. and Epps, J.A., “Evaluation of Polymer-Modified Asphalt Concrete Mixtures,” Journal of Materials in Civil Engineering , ASCE, Vol.7, No.2, pp.117-124 (1995).
Stastna, J., Zanzotto, L. and Berti, J., “How Good are Some Rheological Models of Dynamic Material Functions of Asphalt,” Journal of the Association of Asphalt Paving Technologists, Vol.66, pp.458-485 (1997).
Sherwood, J.A., Thomas, N.L. and Qi, X., “Correlation of Superpave G*/sinδ with Rutting Test Results from Accelerated Loading Facility,” Transportation Research Record 1630, pp.53-61, (1997).
Van der Poel, C., “A General System Describing the Viscoelastic Properties of Bitumen and It's Relation to Routine Test Data,” Journal of Applied Chemistry, Vol.4, pp.221-236 (1954).