簡易檢索 / 詳目顯示

研究生: 李彥
Li, Yen
論文名稱: 以低溫微波退火使超淺層接面活化及再結晶之研究
Investigation of Activation and Re-crystallization of Ultra-shallow Junctions by Low Temperature Microwave Annealing
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 超淺接面離子佈植微波退火飛秒雷射退火
外文關鍵詞: Ultra-shallow junction, Ion implantation, Microwave annealing, Femtosecond annealing
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電晶體閘極長度縮減,元件接面深度也必須隨之調整。本研究使用低能量離子佈植技術與低溫微波退火以達成超淺接面之製作。
    本研究使用矽晶圓經過硼離子佈植(佈植能量400eV)後之試片,利用微波退火、快速熱退火與飛秒雷射退火進行活化及修復。本研究使用數種退火方式的組合,諸如微波退火、兩階段微波退火與微波+飛秒雷射退火。在兩階段微波退火的實驗中,第一階段使用高能量(2400瓦)的微波使矽晶圓表面的非晶層再結晶並增加微波吸收率,第二階段使用低能量(600瓦)的微波活化摻雜的硼。退火完成後使用四點探針量測片電阻值,穿透式電子顯微鏡觀察非晶層厚度,二次離子質譜儀觀察硼的擴散情形。
    量測結果顯示經過兩階段微波退火的試片具有最佳的特性,片電阻值可降低至436 Ω/□,非晶層厚度縮減至3.56nm,在背景濃度5e18 atoms/cm2下硼的擴散深度為14nm,相較於退火前的結果幾乎沒有擴散發生。基於前述的量測結果,我們使用兩階段微波退火後的SOI(Silicon on Insulator)基板製作元件並進行電性量測。結果顯示元件的開關比(Ion/off ratio)可達2x106以上(VDS = -0.05 V)。

    As gate length decreases, extension junction depth must also scale. In order to achieve ultra-shallow junction (USJ), low energy ion implantation and low temperature microwave annealing were used in this study.
    In this study, microwave annealing (MWA) and femtosecond laser annealing (FLA) were employed to recover and activate boron (400eV) implanted silicon wafer. We used several annealing method, including MWA, two-step annealing of microwave and two-step annealing of MWA and FLA to anneal boron implanted silicon wafer. In two-step microwave annealing, 2400Watt high power microwave annealing was used in first step to regrow the amorphous layer to crystal silicon phase and enhance MWA absorption. After crystal silicon regrowth, 600Watt low power microwave annealing was used to activate implanted boron. After annealing, four-point probe was used to measure the sheet resistance, TEM cross-section image was used to investigate the SPER behavior, and SIMS was used to investigate the boron diffusion limitation.
    According to result of analysis, we can know implanted silicon after two-step microwave annealing has the best characteristic. The sheet resistance of implanted and annealed wafer decreased to 436Ω/□, and the thickness of a-layer decreased to 3.56nm. The SIMS profile shows that the junction depth @5e18 atoms/cm2 was 14 nm, and it means boron barely diffuse after two-step microwave annealing. We used the two-step microwave annealed silicon wafer to make P-MOS device. The P-MOS device high current on/off ratio (Ion/off) is more than 2x106 (VDS = -0.05 V).

    Chapter 1 Introduction 1 1-1 Semiconductor Process Overview 1 1-1.1 MOSFET Scaling 2 1-1.2 Shallow Junction Processing 3 1-2 Motivation 5 Chapter 2 Literature Review 10 2-1 Ion Implantation 10 2-2 Microwave annealing on Implanted Silicon 11 2-3 Activation and De-activation 12 2-4 Solid Phase Epitaxial Regrowth 13 Chapter 3 Experiment Scheme 14 3-1 Process Equipment 14 3-1.1 Ion Implanter 14 3-1.2 Microwave 18 3-1.3 Femtosecond Laser Annealing 19 3-1.4 Sputter System 20 3-2 Analysis Equipment 23 3-2.1 Four-point probe 23 3-2.2 Transmission Electron Microscopy (TEM) 25 3-2.3 Secondary ion mass spectrometry (SIMS) 26 3-2.4 Hall Measurement 27 3-3 Experimental methods and procedures 29 3-3.1 Ion Implantation 30 3-3.2 Microwave annealing Process 30 3-3.3 Microwave + Femtosecond Laser Annealing Process 31 3-3.4 Two-step Microwave Annealing Process 32 3-3.5 Process Flow of Device 33 Chapter 4 Results and Discussion 35 4-1 Microwave annealing 35 4-2 Microwave + Femtosecond Laser 43 4-3 Two-step Microwave Annealing 48 4-4 Mechanism 55 4-5 Device Characteristic 57 Chapter 5 Conclusion 61 Reference 63

    1. G. E. Moore, Electronics 38, 114 (1965)
    2. Intel Corporation, Excerpts from A Conversation with Gordon Moore: Moore’s Law (2005)
    3. Moore's law In Wikipedia, the free encyclopedia (2013)
    4. M.H. Clark, PhD Dissertation, University of Florida, Gainesville, FL (2004)
    5. 張文亮, 朝向更低能量之離子植入製程新趨勢與超淺接面之製作, 奈米通訊19卷no.1 p.35 (2012)
    6. 李紹全, 微波退火對矽材料電性變化之研究 (2010)
    7. International Technology Roadmap for Semiconductor, [Online] Available : http://www.itrs.net/
    8. Agarwal, A., Gossmann, H. J., Eaglesham, D., Pelaz, L., Jacobson, D., Haynes, T., Erokhin, Y. E. 1997, Applied physics letters, 71, 3141. (1997)
    9. Pawlak, B., Vandervorst, W., Smith, A., Cowern, N. E. B., Colombeau, B. 2005, Applied physics letters, 86, 101913. (2005)
    10. Claverie, A., Colombeau, B., Ben Assayag, G., Bonafos, C., Cristiano, F., Omri, M., de Mauduit, B. 2000, Materials Science in Semiconductor Processing, 3, 269. (2000)
    11. R. Camillo-Castillo, M. Law, K. Jones, R. Lindsay, K. Maex, B. Pawlak and S. McCoy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24 (1), 450-455 (2006)
    12. S. D. Kim, C. M. Park and J. C. S. Woo, Electron Devices, IEEE Transactions on 49 (3), 457-466 (2002)
    13. Pawlak, B., Duffy, R., Augendre, E., Severi, S., Janssens, T., Absil, P., Vandervorst, W., Collart, E., Felch, S., Schreutelkamp, R. The Carbon Co-implant with Spike RTA Solution for Phosphorus Extension. MRS Proceedings: Cambridge Univ Press; (2006)
    14. Graoui, H., Foad, M. A. 2005, Materials Science and Engineering: B, 124, 188. (2005)
    15. Sundaresan, S. G., Rao, M. V., Tian, Y., Schreifels, J. A., Wood, M. C., Jones, K. A., Davydov, A. V. 2007, Journal of electronic materials, 36, 324. (2007)
    16. Lee, Y.-J. Dopant activation by microwave anneal. Junction Technology (IWJT), 2011 11th International Workshop on: IEEE; 2011. p. 44. (2011)
    17. Lee, Y.-J., Chuang, S.-S., Hsueh, F.-K., Lin, H.-M., Wu, S.-C., Wu, C.-Y., Tseng, T.-Y. 2011, Electron Device Letters, IEEE, 32, 194. (2011)
    18. Renata A. Camillo-Castillo, Boron Activation And Diffusion In Silicon For Varying Initial Process Conditions During Flash-Assist Rapid Thermal Annealing (2006)
    19. K.S. Jones, S. Prussin and E. R. Weber, Appl. Phys. A 45, 1 (1988)
    20. K.N. Tu, S.I. Tan, P. Chaudhari, K. Lai and B.L. Crowder, J. Appl. Phys. 43, 4262 (1972)
    21. M. H. Brodsky, R.S. Title, K.Weisser and G.D. Pettit, Phys. Rev. B1, 2632 (1869)
    22. Fu-Kuo Hsueh, Yao-Jen Lee, Kun-Lin Lin, Michael I. Current, Ching-Yi Wu, and Tien-Sheng Chao, Amorphous-Layer Regrowth and Activation of P and As Implanted Si by Low-Temperature Microwave Annealing, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 7, JULY 2011 (2011)
    23. 薛富國、李耀仁、林昆霖、Michael I. Current、趙天生, 利用低溫微波退火製程探討磷離子與砷離子固相磊晶成長所呈現的活化與非活化特性, 奈米通訊 NANO COMMUNICATION 19卷 No.1 p.14 (2012)
    24. Lourdes Pelaz, V. C. Venezia, H.-J. Gossmann, G. H. Gilmer, A. T. Fiory et al. Activation and deactivation of implanted B in Si, APPLIED PHYSICS LETTERS VOLUME 75, NUMBER 5, 2 AUGUST 1999 (1999)
    25. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997)
    26. A. Lietoila, R. B. Gold, J. F. Gibbons, T. W. Sigmon, P. D. Scovell and J. M. Young, Metastable As-concentrations in Si achieved by ion implantation and rapid thermal annealing, J. Appl. Phys. 52, 230 (1981)
    27. S. Qin, Allen McTeer, Jeff Y. Hu, S. Prussin, Jason Reyes, A Comparative Study Of Dopant Activation And Deactivation In Boron Implanted Silicon, American Institute of Physics 978-0-7354-0876-0/10 (2010)
    28. Robert Murto, Kevin Jones, Michael Rendon, Somit Talwa, Activation and deactivation studies of laser thermal annealed boron, arsenic, phosphorus, and antimony ultra-shallow abrupt junctions, IEEE(2000)
    29. OSee, e.g., N. G. E. lohansson, 1. W. Mayer, and 0.1. Marsh, Solid State Electron. 13, 317 (1970)
    30. T. E. Seidel and A. U. Mac Rae, Radiat. Eff. 7, 1 (1971)
    31. J. Huang, D. Fan, and R. J. Jaccodine, J. Appl. Phys. 63, 5521 (1988)
    32. J. M. Poate and J.S. Williams, Ion Implantation and Beam Processing (Academic Press, New York 1984), p. 27 (1984)
    33. J. Narayan and O. W. Holland, Phys. Stat. Sol., 78, 225 (1982)
    34. G.L. Olson, Mat. Res. Soc. Proc., 35, 25 (1985)
    35. Ion implantation. (2013, May 22). In Wikipedia, the free encyclopedia. Retrieved May, 2013, from http://en.wikipedia.org/wiki/Ion_implanter (2013)
    36. Hamm, Robert W.; Hamm, Marianne E. (2012). Industrial Accelerators and Their Applications. World Scientific (2012)
    37. A. J. Armini, S. N. Bunker and M. B. Spitzer, Non-mass-analyzed Ion Implantation Equipment for high Volume Solar Cell Production, Proc. 16th IEEE Photovoltaic Specialists Conference, 27-30 Sep 1982 (1982)
    38. G. Landis et al., Apparatus and Technique for Pulsed Electron Beam Annealing for Solar Cell Production, Proc. 15th IEEE Photovoltaic Specialists Conf(1981)
    39. Pozar, David M. (1993). Microwave Engineering Addison–Wesley Publishing Company (1993)
    40. R. Sorrentino, Giovanni Bianchi, Microwave and RF Engineering, John Wiley & Sons, 2010, p. 4 (2010)
    41. Y.-J. Lee, S.-S. Chuang, C.-I. Liu et al. Full Low Temperature Microwave Processed Ge CMOS Achieving Diffusion-Less Junction and Ultrathin 7.5nm Ni Mono-Germanide, IEDM 12-516 (2012)
    42. 鄭中緯、簡志維、吳秉翰, 飛秒雷射之透明材料微細加工之應用, 機械工業雜誌, 2010.02, p43 (2010)
    43. G.C. Schwartz and K. V. Srikrishnan, “Handbook of semiconductor interconnection technology”, 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006)
    44. D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA,) (1995)
    45. Transmission electron microscopy. (2013, May 24). In Wikipedia, the free encyclopedia. Retrieved May, 2013, from http://en.wikipedia.org/wiki/Transmission_electron_microscopy
    46. 莊耿林, 以霍爾效應量測法對氮化鎵半導體作電性分析(2003)
    47. E. H. Putley, The Hall potential across an inhomogeneous conductor, Phys. Rev, 79, 1023-24(1950)
    48. Edwin Hall, On a New Action of the Magnet on Electric Currents, American Journal of Mathematics (American Journal of Mathematics, Vol. 2, No. 3) (1879)
    49. Woodhouse, J., Donnelly, J., Nitishin, P., Owens, E., Ryan, J. 1984, Solid-State Electronics, 27, 677. (1984)
    50. Kennedy, E. 1981, Applied physics letters, 38, 375. (1981)

    無法下載圖示 校內:2018-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE