簡易檢索 / 詳目顯示

研究生: 劉正偉
Liu, Cheng-Wei
論文名稱: 應用於多電飛機三級式同步發電機之控制單元研製
Development of Control Unit for Three-Stage Wound-Rotor Synchronous Generator of More Electric Aircraft
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 137
中文關鍵詞: 多電飛機發電機控制單元三級式同步發電機勵磁控制
外文關鍵詞: More Electric Aircraft, Generator Control Unit(GCU), Three-stage Wound-Rotor Synchronous Generator, Exciter Control
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,隨著電力系統容量不斷提升,發電機結構和運行方式日趨複雜,加上多電飛機發電設備之高可靠度、高功率密度與高效率等要求,使得發電機控制單元之性能要求亦趨提高。由於發電機控制單元對發電機乃至電力系統之安全穩定運行影響至大,加上其系統架構與控制策略之複雜度使得設計與製作難度隨之提高。故本論文之目標,係以探討數位發電機控制單元應用於20 kVA三級式同步發電機之系統性能與響應分析。
      本論文利用數位控制器結合高可靠度之電能轉換架構於發電機輸出電壓與激磁電流控制,建立一套三級式同步發電機勵磁控制系統,並利用ANSYS / Twin Builder與ANSYS / Maxwell之磁電耦合模擬進行系統驗證分析。本論文亦製作一具三級式同步發電機控制單元,並結合發電機實測驗證設計與模擬結果。

    In recent years, as the capacity of power systems has increased, the structure and operation of generators have become increasingly complex. In addition, due to the demands of high reliability, high power density and high efficiency of multi-powered aircraft generating equipment, the performance requirement of the control units of generators is also increasing. The generator control unit has a great impact on the safe and stable operation of the generator and the power system and the complexity of the system architecture and control strategy make the design and the manufacture even more difficult. The objective of this thesis is to investigate the system performance and response analysis of the digital generator control unit applied to a 20 kVA three-stage synchronous generator.
    In this thesis, a three-stage synchronous generator excitation control system is built using a digital controller combined with a highly reliable power conversion architecture to control the output voltage and excitation current of the generator. Finally, the ANSYS / Twin Builder and ANSYS / Maxwell magneto-electric coupling simulations are used for system verification and analysis.

    摘要 II 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XIX 符號表 XXIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1飛機電力系統的演進 3 1.2.2三級式同步發電機 7 1.2.3發電機控制單元 11 1.3 研究動機與目的 15 1.4 論文架構 17 第二章 三級式發電機與發電機控制單元概述 18 2.1 同步發電機數學模型 20 2.2 座標軸轉換 22 2.3 旋轉座標軸系統的同步發電機數學模型 24 2.4 發電機控制器 25 2.4.1控制功能 26 2.4.2保護功能 27 2.5 發電機激磁電路架構 27 2.6 小結 30 第三章 應用於多電飛機三級式發電機控制單元之設計與分析 32 3.1 功率因數之定義與功率因數校正器之選用 34 3.1.1功率因數的定義 34 3.1.2主動式功率因數修正電路 39 3.2 昇壓型功率因數校正電路控制器設計 49 3.2.1昇壓型功率因數校正電路分析 49 3.2.2昇壓型轉換器小訊號分析 51 3.2.3功率因數校正數位控制器設計 54 3.3 發電機激磁電路與發電機激磁控制器設計 59 3.3.1發電機激磁電路分析 59 3.3.2發電機激磁電路數位控制器設計 63 3.4 小結 68 第四章 三級式發電機控制單元之硬體規劃與系統流程設計 69 4.1 功率級電路元件設計 70 4.1.1模組式三相昇壓型功率因數校正電路 72 4.1.2非對稱半橋激磁電路 77 4.2 介面電路設計 78 4.2.1電壓偵測電路 79 4.2.2電流偵測電路 83 4.2.3隔離與驅動電路 84 4.3 發電機控制器設計 86 4.3.1數位訊號處理器 86 4.3.2數位控制器 87 4.4 系統程式規劃 88 4.4.1功率因數較正器控制之程式流程 90 4.4.2非對稱半橋激磁電流控制之程式流程 91 4.5 小結 93 第五章 三級式同步發電機控器模擬與實驗結果 94 5.1 三級式同步發電機 94 5.2 系統硬體電路架構 95 5.3 模擬結果 96 5.3.1三相功率因數校正電路模擬結果 96 5.3.2非對稱半橋激磁電路模擬結果 102 5.3.3磁電耦合模擬分析 106 5.4 發電機控制器電路實測結果 111 5.5 小結 129 第六章 結論與未來展望 130 6.1 結論 130 6.2 未來展望 131 參考文獻 132

    [1] J. L. Felder, G. V. Browm, H. Daekim, and J. Chu, “Turboelectric distributed propulsion in a hybrid wing body aircraft,” in Proc. NASA Tehnical Report 1 ISABE-20(2011), Hampton, Virginia: NASA Langley Research Center, Sept 2011.
    [2] I. Moir, A. Seabridge, and M. Jukes, “Electrical systems,” in Proc. Civil Avionics Systems, 2nd ed. New York, USA: Wiley, Sept 2013, pp. 235-290.
    [3] X. Zhao, J. M. Guerrero, and X. Wu, “Review of Aircraft Electric Power Systems and Architectures,” in Proc. IEEE International Energy Conf (ENERGYCON). Cavtat, Jul 2014, pp. 949-953.
    [4] K. Emadi, and M. Ehsani, (2000. Jan.). Aircraft power systems: technology, state of the art, and future trends. IEEE Aerospace and Electronic Systems Magazine, vol. 15, no. 1, pp. 28-32.
    [5] Z. Zhang, J. Li, Y. Liu, Y. Xu, and Y. Yan, “Overview and Development of Variable Frequency AC Generators for More Electric Aircraft Generation System,” Chinese Journal of Electrical Engineering, vol. 3, no. 2, pp. 32-40, Sept 2017.
    [6] V. Madonna, P. Giangrande, and M. Galea, “Electrical Power Generation in Aircraft : Review, Challenges, and Opportunities,” IEEE Transactions on Transportation Electrification, vol. 4, no. 3, pp. 646-659, Sept. 2018.
    [7] M. Olaiya, and N. Buchan, “High power variable frequency generator for large civil aircraft,” in Proc. IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft. London, UK, Nov 1999, pp. 3/1-3/4.
    [8] C. A. Ferreira, and E. Richter, “Detailed Design of a 260-kW Switched Reluctance Starter/Generator for an Aircraft Engine,” SAE Technical, vol 102, no 1, pp. 289-300, Apr 1993.
    [9] H. Woo, and D. Lee, “Efficiency and Performance Analysis of a Generator – Exciter Combination System,” in Proc. 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, Jul 2019, pp. 22-28.
    [10] Y. Wang, S. Nuzzo, H. Zhang, W. Zhao, C. Gerada, and M. Galea, “Challenges and Opportunities for Wound Field Synchronous Generators in Future More Electric Aircraft,” IEEE Transactions on Transportation Electrification, Mar 2020.
    [11] H. Gorginpour, “Optimal design of brushless AC exciter for large synchronous generators considering grid codes requirements,” IET Generation, Transmission & Distribution, vol. 12, no. 17, pp. 3954-3962, Sept 2018.
    [12] J. Li, Z. Zhang, J. Lu, Y. Liu, and Z. Chen, “Design and Characterization of a Single-Phase Main Exciter for Aircraft Wound-Rotor Synchronous Starter–Generator,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018.
    [13] F. Kutt, M. Michna, and G. Kostro, “Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft,” Energies, May 2020.
    [14] Juha Pyrhonen, Tapani Jokinen, and Valeria Hrabovcova, Design of Rotating Electrical Machines, 2nd ed. Wiley, 2014.
    [15] KUTAI ELECTRONIC. Generator study [Online]. Available: https://www.kutai.com.tw/edu/gen.html
    [16] S. Bulen, and E. H. Colin, “Method and system for providing single-phase excitation techniques to a start excitation in a starter/generator system,”U.S. Patent, Step 2006.
    [17] N. Jiao, W. Liu, T. Meng, J. Peng, and S. Mao, “Design and control of a two-phase brushless exciter for aircraft wound-rotor synchronous starter/generator in the starting mode,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4452-4461, Jun. 2016.
    [18] J. Wei, Q. Zheng, and Y. Yang, “Integrated AC and DC excitation method for brushless synchronous machine,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2322-2325,Sept. 2012.
    [19] P. Kundur, N. J. Balu, M. G. Lauby, Power System Stability and Control. McGraw-Hill, 1994, ch.8, pp. 315-377.
    [20] A. K. Hyder, “A century of aerospace electrical power technology,” Journal of Propulsion and Power, vol. 19, no. 6, Nov 2006.
    [21] X. Roboam, B. Sareni and A. D. Andrade, “More Electricity in the Air: Toward Optimized Electrical Networks Embedded in More-Electrical Aircraft,” IEEE Industrial Electronics Magazine, vol. 6, no. 4, pp. 6-17, Dec 2012.
    [22] D. Boroyevich, F. Wang, “Digital Generator Controller Development” CPES, 2002.
    [23] Digital Excitation Applications Task Force of the Excitation Systems Subcommittee, “Digital excitation technology. A review of features, functions and benefits,” IEEE Transactions on Energy Conversion, vol. 12, no. 3, pp. 255-258, Sept. 1997.
    [24] G. Erceg, R. Erceg and T. Idzotic, “Using digital signal processor for excitation system of brushless synchronous generator,” in Proc. 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, San Jose, CA, USA, Aug 2002, pp. 1355-1360.
    [25] M. G. McArdle, D. J. Morrow, P. A. J. Calvert and O. Cadel, "A hybrid PI and PD type fuzzy logic controller for automatic voltage regulation of the small alternator,” in Proc. 2001 Power Engineering Society Summer Meeting, vol. 3, Vancouver, BC, Canada, Aug 2001, pp. 1340-1345.
    [26] X. Deng, H. Wu, B. Gu, G. Atkinson, B. Mecrow and V. Pickert, “Present and Future of Fault Tolerant Drives Applied to Transport Applications,” in Proc. CIPS 2020-11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, Mar 2020, pp. 1-8.
    [27] B. Wei and Y. Zhongdong, “Study on AC-Excited Control Strategy of Doubly-Fed VSCF Wind Power Generation System,” in Proc. 2009 International Conference on Energy and Environment Technology, Guilin, Guangxi, 2009, pp. 837-840.
    [28] A. R. Hasan, T. S. Martis and A. H. M. S. Ula, “Design and implementation of a fuzzy controller based automatic voltage regulator for a synchronous generator,” IEEE Transactions on Energy Conversion, vol. 9, no. 3, pp. 550-557, Sept. 1994.
    [29] P. C. Krause, O.Wasynczuk, S. Sudhoff, Analysis of electric Machinery and Drive Systems, 2nd ed., Wiley-IEEE Press, 2002.
    [30] T. Ahmed, K. Nishida, M. Nakaoka, and O. Noro, “Self-excited induction generator with regulated dc voltage scheme for wind power applications,” in Proc. Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 3, Austin, TX, Jun 2005, pp. 1831-1837.
    [31] G. Jia, Y. Dong, C. Zhang, “PWM-based excitation system of generators,” Journal of Tianjin University, 2005.
    [32] C. Cossar, and T. Sawata, “Microprocessor controlled DC power supply for the generator control unit of a future aircraft generator with a wide operating speed range,” in Proc. Second International Conference on Power Electronics, Machines and Drives (PEMD 2004), vol. 2, Edinburgh, UK, Nov 2004, pp. 458-463.
    [33] A. Godhwani, K. Kim and M. J. Basler, “An under and over excitation limiter implementation in a digital excitation system for synchronous generators,” in Proc. IEEE Power Engineering Society. 1999 Winter Meeting, vol. 1, New York, USA, Jan 1999, pp. 193-195.
    [34] S. Lee, and M. Kim, “High Efficiency Isolated Resonant PFC Converter for Two-stage AC-DC Converter with Enhanced Performance,” in Proc. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, Sept 2019, pp. 1120-1124.
    [35] 王順忠,電力電子學,東華書局, 2001。
    [36] 簡志遠,主動式功率因數校正之模糊控制器設計,臺北科技大學碩士論文, 2011。
    [37] H. Wei, and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. Proceedings IEEE Southeastcon '98 'Engineering for a New Era', Orlando, FL, USA, Apr 1998, pp. 348-353.
    [38] J. W. Lim, and B. H. Kwon, “A power-factor controller for single-phase PWM rectifiers,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 1035-1037, Oct. 1999.
    [39] K. Nishimura, K. Atsuumi, K. Tachibana, K. Hirachi, S. Moisseev, and M. Nakaoka, “Practical performance evaluations on an improved circuit topology of active three-phase PFC power converter,” in Proc. APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 2, Anaheim, CA, USA, Mar 2001, pp. 1308-1314.
    [40] G. Spiazzi, and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase applications,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 365-371, Jun 1997.
    [41] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” in Proc. 20th Annual IEEE Power Electronics Specialists Conference, Milwaukee, WI, USA, 1989, pp. 58-66.
    [42] S. Gautam, A. K. Yadav, and R. Gupta, “AC/DC/AC converter based on parallel AC/DC and cascaded multilevel DC/AC converter,” in Proc. 2012 Students Conference on Engineering and Systems, Allahabad, Uttar Pradesh, Mra 2012, pp. 1-6.
    [43] 梁從主、陳建富、吳登和、陳奉般、曾國鏡,單級高功因充電器之研究,電子月刊,第七卷,第二期,第106-119頁,2001。
    [44] X. Du, L. Zhou, and H. Tai, “Average Current Control of a Series-Type Single-Phase PFC With Hybrid Modulation,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2381-2385, Sept. 2011.
    [45] R. Etz, T. Patarau, and D. Petreus, “Comparison between digital average current mode control and digital one cycle control for a bridgeless PFC boost converter,” in Proc. 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME), Alba Iulia, Oct 2012, pp. 211-215.
    [46] Y. Ke, Y. Zhou and, J. Chen, “Control Bifurcation in PFC Boost Converter under Peak Current-Mode Control,” in Proc. 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, Aug 2006, pp. 1-5.
    [47] A. Hirota, S. Nagai, M. A. Al, M. Rukonuzzaman, and M. Nakaoka, “A novel hysteresis current control scheme for single switch type single phase PFC converter,” in Proc. Proceedings of the Power Conversion Conference-Osaka 2002, vol. 3, Osaka, Japan, Apr 2002, pp. 1223-1225.
    [48] Y. Lai, S. Chen, and Z. Su, “Self-commissioning of digital-controlled power factor corrector with critical current mode,” in Proc. 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, Nov 2013, pp. 24-29.
    [49] R. W. Erickson, and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed, Kluwer Academic Publishers, 2001.
    [50] R. D. Middlebrook, and S. Cuk, “A general unified approach to modelling switching-converter power stages,” in Proc. 1976 IEEE Power Electronics Specialists Conference, Cleveland, OH, Jun 1976, pp. 18-34.
    [51] Texas Instruments, “Average Current Mode Controlled Power Correction Converter Using TMS320LF2407A,” July 2005.
    [52] S. Vinaya,以dsPIC DSC實現能量轉換運用中的功率因數效正,2008。
    [53] J. Li, and H. F. Li, “Novel excitation system based on chopped wave control,” China Academic Journal Electronic Publishing House, vol. 26, no. 7, pp. 13-17, Jul 2006.
    [54] S. Rosado, X. Ma, G. Francis, F. Wang and, D. Boroyevich, “Model-Based Digital Generator Control Unit for a Variable Frequency Synchronous Generator With Brushless Exciter,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 42-52, Mar 2008.
    [55] ROHM, “SF1608G N-channel SiC power MOSFET”, Datasheet, Jun. 2019.
    [56] Taiwan Semiconductor, “SCT3060AL Glass Passivated Super Fast Rectifiers”, Datasheet, Jun. 2018.
    [57] HY Electronic (Cayman) Limited, “GBJ2606 Glass Passivated Bridge Rectifiers”, Datasheet, Jun. 2018.
    [58] Texas Instruments, “TMS320F28379x Dual-Core Delfino™ Microcontrollers”, Datasheet, Nov. 2018.
    [59] 蔡國猷,圖解實用運算放大器電路,建興出版社,2001。
    [60] Taiwaniot, “AC交流電壓感測器ZMPT101B”, Datasheet, Sept. 2019.
    [61] Allegro, “Hall Effect Linear Current Sensor ACS711”, Datasheet, Sept. 2019.
    [62] Analog Devices, “High Voltage, Isolated Gate Driver ADUM4121”, Datasheet, Sept. 2019.

    無法下載圖示 校內:2025-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE