| 研究生: |
黃聖龍 Huang, Sheng-Lung |
|---|---|
| 論文名稱: |
利用監督式機器學習方法對SAT 問題進行分類 SAT Problem Classification by Supervised Machine Learning Method |
| 指導教授: |
陳盈如
Chen, Yean-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 布林可滿足性問題 、NP 完全問題 、分類問題 、神經網路 |
| 外文關鍵詞: | Boolean satisfiability problem, NP complete, Classification, Neural Network |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Yean-Ru Chen Chin-Wei Lien. A hardware sat solver with efficient bcp. Masters thesis, National Cheng Kung University, 2019.
[2] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, pages 151–158, 1971.
[3] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.
[4] Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.
[5] Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62, 2001.
[6] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations and applications. Elsevier, 2004.
[7] Samuel H Huang. Supervised feature selection: A tutorial. Artif. Intell. Res., 4(2):22–37, 2015.
[8] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: an automatic algorithm configuration framework. Journal of Artificial Intelligence Research,36:267–306, 2009.
[9] Michail G Lagoudakis and Michael L Littman. Learning to select branching rules in the dpll procedure for satisfiability. Electronic Notes in Discrete Mathematics, 9:344–359, 2001.
[10] D Mitchell, B Selman, and H Leveque. A new method for solving hard satisfiability problems. In Proceedings of the tenth national conference on artificial intelligence (AAAI-92), pages 440–446, 1992.
[11] Mladen Nikolić, Filip Marić, and Predrag Janičić. Instance-based selection of policies for sat solvers. In International Conference on Theory and Applications of Satisfiability Testing, pages 326–340. Springer, 2009.
[12] Mladen Nikolić, Filip Marić, and Predrag Janičić. Simple algorithm portfolio for sat. Artificial Intelligence Review, 40(4):457–465, 2013.
[13] Eugene Nudelman, Kevin Leyton-Brown, Holger H Hoos, Alex Devkar, and Yoav Shoham. Understanding random sat: Beyond the clauses-to-variables ratio. In International Conference on Principles and Practice of Constraint Programming, pages 438–452. Springer, 2004.
[14] Paul Walton Purdom, Jr and Cynthia A Brown. The pure literal rule and polynomial average time. SIAM Journal on Computing, 14(4):943–953, 1985.
[15] Philip Sedgwick. Pearson's correlation coefficient. Bmj, 345, 2012.
[16] Bart Selman, Henry A Kautz, and Bram Cohen. Noise strategies for improving local search. In AAAI, volume 94, pages 337–343, 1994.
[17] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.
[18] Yean-Ru Chen Shi-Wei Wu. A non-exhaustive hardware sat solver with deeper state exploration capability. Master’s thesis, National Cheng Kung University, 2019.
[19] Dave AD Tompkins and Holger H Hoos. Ubcsat: An implementation and experimentation environment for sls algorithms for sat and max-sat. In International conference on theory and applications of satisfiability testing, pages 306–320. Springer, 2004.
[20] Dave AD Tompkins, Frank Hutter, and Holger H Hoos. Scaling and probabilistic
smoothing (saps). SAT, 2004.
[21] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfoliobased algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.
[22] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla2009: an
automatic algorithm portfolio for sat. SAT, 4:53–55, 2009.
校內:2026-09-24公開