| 研究生: |
林育名 Lin, Yu-Ming |
|---|---|
| 論文名稱: |
應變工程對矽基場效電晶體元件特性之研究 Improved Performance of Si-Based Field-Effect Transistor by Strain Engineering |
| 指導教授: |
吳三連
Wu, San-Lein 張守進 Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 應變 、金氧半場效電晶體 、負偏壓溫度效應 、互補式金氧半場效電晶體 、可靠度 、場效電晶體 、通道摻雜 、矽鍺 |
| 外文關鍵詞: | MOSFET, SiGe, Doped-Channel, NBTI, strain, reliability, CMOSFET, FET |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們主要研究由矽鍺/矽異質接面所產生的應變機制對電晶體元件電特性的提升。我們先後利用固體源分子束磊晶法,與超高真空化學氣相沉積法,成長一系列矽鍺/矽異質接面場效電晶體結構,並針對各種結構進行能帶工程以及載子分布理論模擬分析。
在實驗製作方面,我們首先研製出應變矽鍺通道摻雜金半場效電晶體,改善一般調變摻雜電晶體閘極電壓擺幅較小的缺點。我們並加入平面摻雜技術,以提高載子侷限能力,由實驗結果得知,通道摻雜電晶體的確顯示出較佳的線性度,且平面摻雜也有著較佳的汲極電流與轉導特性。
接著,我們進一步開發適用於當今極大型積體電路的P型應變矽鍺金氧半場效電晶體。由於一般的結構在矽鍺通道上必須磊晶一層矽覆蓋層改善半導體與二氧化矽的介面特性,因此我們首先研究此矽覆蓋層厚度對元件電特性的影響。接著我們將漸變式通道的觀念引進到矽鍺通道中。最後我們使用雙矽鍺通道結構改善元件的閘極電壓擺幅。
由許多文獻中可以得知,應變矽的N型金氧半場效電晶體可以很有效地提昇電子的漂移率,加上我們的研究顯示,應變矽鍺P型金氧半場效電晶體可以提高電洞的漂移率。因此,我們試著將應變矽鍺之P型金氧半場效電晶體與應變矽之N型金氧半場效電晶體製作於同一片晶片上,開發出新式的互補式金氧半場效電晶體。我們使用各別製作的方式,分開P型與N型電晶體元件結構的製作,如此可以分別去設計兩者最佳的結構參數。實驗結果顯示,新式的互補式金氧半場效電晶體的結構的確有著比純矽互補式金氧半場效電晶體更佳的特性。
可靠度是元件另一個重要的參數,因此,最後我們探討矽鍺元件的可靠度分析。我們研究P型電晶體的負偏壓溫度效應。負偏壓溫度效應主要是電洞打斷矽與二氧化矽介面的矽氫鍵結,產生介面陷阱並進而影響元件的臨限電壓。由於應變矽鍺元件會將大部分的電洞載子侷限在埋藏通道中,降低矽與二氧化矽介面的濃度。因此矽鍺P型場效電晶體有較小的負偏壓溫度不穩定性效應。也較適合之後的積體電路使用。
In this dissertation, the study of strain engineering on device performances is reported. A series of SiGe/Si FET structures grown by solid-source molecular beam epitaxy (SS-MBE) or ultra high vacuum chemical vapor deposition (UHV-CVD) are presented. Besides, the simulation of band engineering and carrier distribution for devices has been conducted.
Firstly, the fabrication and characterization of strained-SiGe doped-channel PMESFETs are proposed to achieve higher device linearity. The devices structure combines the advantages of SiGe material and δ-doped technique to increase carrier confinement. As observed from the experiment results, it is found that δ-doped-channel structure exhibits not only better device linearity but also higher current drivability.
Secondarily, we developed compressive strained SiGe PMOSFETs which are suitable for the ULSI technology. The structure parameter such as Si-cap thickness, Ge profile in the SiGe-conducting channel and spacer thickness between double SiGe channels are estabilished and discussed.
Thirdly, we developed two novel CMOS architectures that use tensile stress which induced by the Si nitride-capping layer or SiGe virtual substrate, together with the pseudomorphic compressive stress in SiGe layer to improve the drive current of both n- and pMOSFETs simultaneously. The unique advantage of this process flow is that on the same wafer, individual MOSFET performance can be adjusted independently to their optimum due to the separation process for two type devices. It is found that n- and pMOSFET in both novel CMOS architectures behaved better performance, not only higher drain-to-source saturation current but also higher transconductance than the Si-control devices, thus making this flow to show a great flexibility for developing next-generation high-performance CMOS.
Finally, the negative bias temperature instability (NBTI) effect on SiGe devices has been investigated. NBTI effect is mainly from the break of Si-H bonds caused by hot hole at Si/SiO2 interface and will generate interface traps which affect the threshold voltage. By introduction of strained SiGe layer in PMOSFET, the holes are primarily located in the SiGe channel due to valence band offset and thus the hole concentration in Si surface channel is lower than that of control Si PMOSFET. Therefore SiGe PMOSFETs have lower NBTI effect compared with control Si devices. The experimental results show that SiGe devices are better choices for the future ULSI technology.
[1.1] D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, J. Y. –C. Sun, B. S. Meyerson, and T. Tice, “Si/SiGe epitaxial-base transistor-part I: materials, physics, and circuits,” IEEE Trans. Electron Devices, vol. 42, no. 3, p. 455, 1995.
[1.2] J. Fu, and K. Bach, “A simple electrical approach to extracting the difference in bandgap across neutral base for SiGe HBTs,” Mater. Sci. Semicond. Process, vol. 8, no. 1-3, p. 301, 2005.
[1.3] J. Bock, H. Schafer, H. Knapp, D. Zoschg, K. Aufinger, M. Wurzer, S. Boguth, M. Rest, R. Schreiter, R. Stengl, and T. Meister, “Sub 5ps SiGe bipolar technology,” in IEDM Tech. Dig., 2002, p. 763.
[1.4] V. Palankovski, and S. Selberherr, “The state-of-the-art in simulation for optimization of SiGe-HBTs,” Appl. Surf. Sci., vol. 224, no. 1-4, p. 312, 2004.
[1.5] K. Oda, E. Ohue, M. Tanabe, H. Shimamoto, T. Onai, and K. Washio, “130-GHz fT SiGe HBT technology,” in IEDM Tech. Dig., 1997, p. 791.
[1.6] J. –S. Rieh, B. Jagannathan, H. Chen, K. T. Schonenberg, D. Angell, A. Chinthakinsi, J. Florkey, F. Golan, D. Greenberg, S. –J. Jeng, M. Khater, F. Paggtte, C. Schnable, P. Smith, A. Stricker, K. Vaed, R. Volant, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “SiGe HBTs with cut-off frequency of 350GHz,” in IEDM Tech. Dig., 2002, p. 771.
[1.7] N. Guofu, J. D. Cressler, S. Zhang, A. Joseph, and D. Harame, “ Noise-gain tradeoff in RF SiGe HBTs,” Solid-State Electron., vol. 46, p. 1445, 2002.
[1.8] W. Lu, R. Hammond, S. J. Koester, X. W. Wang, J. O. Chu, T. P. Ma, and I. Adesida, “High performance 0.15μm self-aligned SiGe p-MOS-MODFET’s with SiN gate dielectric,” in IEDM Tech. Dig., 1999, p. 577.
[1.9] M. Arafa, P. Fay, K. Ismail, J. O. Chu, B. S. Meyerson, and I. Adesida, “DC and RF performance of 0.25μm p-type SiGe MODFET,” IEEE Electron Device Lett., vol. 17, no. 9. p. 449, 1996.
[1.10] S. Verdonckt-Vandebroek, E. F. Crabbé, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel heterojunction p-MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, no. 1, p. 90, 1994.
[1.11] Z. Shi, D. Onsongo, and S. K. Baneriee, “Mobility and performance enhancement in compressively strained SiGe channel pMOSFETs,” Appl. Surf. Sci., vol. 224, p. 248, 2004.
[1.12] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep subsmicron strained-Si n-MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 7, p. 1406, 2000
[1.13] M. H. Lee, P. S. Chen, W. C. Hua, C. Y. Yu, Y. T. Tseng, S. Maikap, Y. M. Hsu, C. W. Liu, S. C. Lu, W. Y. Hsieh, and M. J. Tsai, “Comprehensive low-frequency and RF noise characteristics in strained-Si nMOSFETs,” in IEDM Tech. Dig., 2003, p. 69.
[1.14] N. Sugii, K. Nakagawa, S. Yamaguchi, and M. Miyao, “Role of Si1-xGex buffer layer on mobility enhancement in a strained-Si n-channel metal-oxide-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 75, p. 2848, 1999.
[1.15] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” IEEE Trans. Electron Devices, vol. 49, p. 2237, 2002.
[1.16] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, p. 797, 1986.
[1.17] B. S. Meyerson, “UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applications,” Proc. IEEE, vol. 80, p. 1592, 1992.
[1.18] B. Tillack, D. Krüger, P. Gaworzewski, and G. Ritter, “Atomic layer doping of SiGe by low pressure chemical vapor deposition,” Thin Solid Films, vol. 294, p. 15, 1997.
[1.19] B. Tillack, G. Ritter, D. Krüger, P. Zaumseil, G. Morgenstern, and K. D. Glowatzki, “Sharp boron doping within thin SiGe layer by rapid thermal chemical vapor deposition,” Mater. Sci. Technol., vol. 11, p. 1060, 1995.
[1.20] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. van Ijzendoorn, and P. C. Zalm, “Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD,” Jpn. J. Appl. Phys., vol. 29, p. 2307, 1990.
[1.21] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A, vol. 2, p. 436, 1984.
[1.22] J. R. Arthur, “ Molecular beam epitaxy,” Surf. Sci., vol. 500, p. 189, 2002.
[1.23] M. A. Herman, “Approaches to understanding MBE growth phenomena,” Thin Solid Films, vol. 267, no. 1-2, p. 1, 1995.
[2.1] R. People, “Physical and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., vol. QE-22, no. 9, p. 1696, 1986.
[2.2] J. H. van der Merwe, “Crystal interface. Part II. Finite overgrowths,” J. Appl. Phys., vol. 34, p. 123, 1963.
[2.3] Y. H. Xie, “SiGe field effect transistors,” Mater. Sci. Eng. R-Rep., vol. 25, p. 89, 1999.
[2.4] R. People and S. A. Jackson, “Structurally induced states from strain and confinement,” Semiconductors and Semimetals, vol. 32, p. 119, 1990.
[2.5] K. Rim, “Strained Si surface channel MOSFETs for high-performance CMOS technology,” Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, p. 116.
[2.6] C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system” Phys. Rev. B, vol. 34, no. 8, p. 5621, 1986.
[2.7] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si strain-related transport improvements,” Appl. Phys. Lett., vol. 55, p. 2008, 1989.
[2.8] J. M. Hinckley, and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no. 5, p. 2912, 1990.
[2.9] S. K. Chun, and K. L. Wang, “Effective mass and mobility of holes in strained Si1-xGex on (001) Si1-yGey substrate,” IEEE Trans. Electron Devices, vol. 39, p. 2153, 1992.
[3.1] C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “A novel δ-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability,” IEEE Electron Device Lett., vol. 16, no. 3, p. 112, 1995.
[3.2] T. Akinwande, J. Zou, M. S. Chur, and A. Gopinath, “Dipole heterostructure field-effect transistor,” IEEE Electron Device Lett., vol. 11, no. 8, p. 332, 1990.
[3.3] Y. J. Chan, and D. Pavlidis, “Single and dual p-doped channel In0.52Al0.48As/InxGa1-xAs (x=0.53,0.65) FET’s and the role of doping,” IEEE Trans. Electron Devices, vol. 39, no. 3, p. 466, 1992.
[3.4] S. C. Yang, S. C. Chiol, Y. J. Chan, and H. H. Lin, “Selectively dry-etched In0.49Ga0.51P/In0.15Ga0.85As double-doped channel FETs using CHF3+BCl3 plasma,” IEEE Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on, p. 114.
[3.5] F. T. Chien, and Y. J. Chan, “Improved voltage gain of transimpedance amplifier by AlGaAs/InGaAS doped channel FET’s” IEEE Trans. Electron Devices, vol. 46, no. 6, p. 1094, 1999.
[3.6] Y. J. Chan, T. J. Yeh, and J. M. Kuo, “In0.49Ga0.51P/In0.15Ga0.85As hetrostructure pulsed doped-channel FETs,” Electron. Lett., vol. 30, no. 13, p. 1094, 1994.
[3.7] M. J. Kao, H. M. Shieh, W. C. Hsu, T. Y. Lin, “Investigation of electron transfer characteristics in multi-δ-doped GaAs FET’s,” IEEE Trans. Electron Devices, vol. 43, no. 8, p. 1181, 1996.
[3.8] W. P. Hong, J. Harbison, L. Florez, and J. H. Abeles, “DC and AC characteristics of delta-doped GaAs FET,” IEEE Electron Device Lett., vol. 10, no. 7, p. 310, 1989.
[3.9] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, no. 9, p. 1630, 1993.
[3.10] W. C. Hsu, W. C. Liu, D. F. Guo, and W. S. Lour, “GaAs-InGaAs double delta-doped quantum-well switching device prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 62, no. 13, 29, p. 1504, 1993.
[3.11] M. J. Kao, W. C. Hsu, R. T. Hsu, Y. H. Wu, T. Y. Lin, and C. Y. Chang, “Characteristics of graded-like multiple-delta-doped GaAs field effect transistors,” Appl. Phys. Lett., vol. 66, no. 19, 8, p. 2505, 1995.
[3.12] X. Zheng, T. K. Carns, K. L. Wang, and B. Wu, “Electron mobility enhancement from coupled wells in delta-doped GaAs,” Appl. Phys. Lett., vol. 62, no. 5, 1, p. 504, 1993.
[3.13] C. E. C. Wood, G. Metze, J. Berry, and L. F. Eastman, “Complex free-carrier profile synthesis by “atomic-plane” doping of MBE GaAs,” J. Appl. Phys., vol. 51, no. 1, p.383, 1980.
[3.14] E. F. Schubert, and K. Ploog, “The δ-doped field-effect transistor,” Jpn. J. Appl. Phys., vol. 24, no. 8, p. L608, 1985.
[3.15] E. F. Schubert, A. Fisher, and K. Ploog, “The delta-doped field-effect transistor (δFET),” IEEE Trans. Electron Devices, vol. 33, no. 5, p. 625, 1986.
[3.16] W. P. Hong, J. Harbison, L. Florez, and J. H. Abeles, “DC and AC characteristics of delta-doped GaAs FET,” IEEE Electron Device Lett., vol. 10, no. 7, p. 310, 1989.
[3.17] E. F. Schubert, J. E. Cunningham, W. T. Tsang, and T. H. Chiu, "Delta-doped ohmic contacts to n-GaAs," Appl. Phys. Lett., vol. 49, no. 5, 4, p. 292, 1986.
[3.18] J. D. Werking, C. R. Bolognesi, L. D. Chang, C. Nguyen, E. L. Hu, and H. Kroemer, “High-transconductance InAs/AlSb heterojunction field-effect transistors with δ-doped AlSb upper barriers,” IEEE Electron Device Lett., vol. 13, no. 3, p. 164, 1992.
[3.19] R. J. Malik, L. M. Lunardi, J. F. Walker, and R. W. Ryan, "A planar doped 2D-hole gas base AlGaAs/GaAs hetrojunction bipolar transistor grown by molecular beam epitaxy," IEEE Electron Device Lett., vol. 9, no. 1, p. 7, 1988.
[3.20] D. C. Streit and F. G.. Allen, "Silicon triangular barrier diodes by MBE using solid phase epitaxial regrowth," IEEE Electron Device Lett., vol. 5, no. 7, p. 254, 1984.
[3.21] E. F .Schubert, B. Ullrich, T. D. Harris, and J. E. Cunningham, “Quantum-confined interband absorption in GaAs sawtooth-doping superlattices,” Phys. Rev. B, vol. 38, p. 8305, 1988.
[3.22] K. Ploog, “Delta-doping in MBE grown GaAs: concept and device application,” J. Cryst. Growth, vol. 81, p. 304, 1987.
[3.23] K. Board, and H. C. Nutt, "Double delta-doped FETs in GaAs," Electron. Lett., vol. 28, no. 5, p. 469, 1992.
[3.24] H. P. Zeindl, T. Wegehauppt, I. Eisele, H. Oppolzer, H. Reisinger, G.. Tempel, and F. Koch, "Growth and characterization of a delta-function doping layer in Si ", Appl. Phys. Lett., vol. 50, no. 17, 27, p. 1164, 1987.
[3.25] H. P Zeindl, B. Bullemer, and I. Eisele, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., vol. 136(4), p. 1129, 1989.
[3.26] K. Nakagawa, A. A. van Gorkum, and Y. Shiraki, "Atomic layer doped field-effect transistor fabricated using Si molecular beam epitaxy," Appl. Phys. Lett., vol. 54, no. 19, 8, p. 1869, 1989.
[3.27] K. Bord, and H. C. Nutt, “Double delta-doped FETs in GaAs,” Electron. Lett., vol. 28, no. 5, p. 469, 1992.
[3.28] S. Nakajima, N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, “Characterization of double pulse-doped channel GaAs MESFET’s,” IEEE Electron Device Lett., vol. 14, no. 3, p. 146, 1993.
[3.29] H. Jorke, and H. Kibbel, “Boron delta doping in Si and Si0.8Ge0.2 layers,” Appl. Phys. Lett., vol. 57, no. 17, p. 1763, 1990.
[3.30] N. L. Mattey, M. G. Dowsett, E. H. C. Parker, and T. E. Whall, “P-type delta-doped layers in silicon: Structural and electronic properties,” Appl. Phys. Lett., vol. 57, no. 16, p. 1648, 1990.
[3.31] H. P. Zeindl, T. Wegehaupt, and I. Eisele, “Growth and characterization of a delta-function doping layer in Si,” Appl. Phys. Lett., vol. 50, no. 17, p. 1164, 1987.
[3.32] A. A. van Gorkum, K. Nakagawa, and Y. Shiraki, “Growth and characterization of atomic layer doping structure in Si,” J. Appl. Phys., vol. 65, no. 6, p. 2485, 1989.
[3.33] H. P. Zeindl, B. Bullemer, and I. Eisele, “Delta-doped MESFET with MBE-grown Si,” J. Electrochem. Soc., vol. 136(4), p. 1129, 1989.
[3.34] A. A. van Gorkum, K. Nakagawa, and Y. Shiraki, “Controlled atomic layer doping and ALD MOSFET fabrication in Si,” Jpn. J. Appl. Phys., vol. 26, no. 12, p. L1933, 1987.
[3.35] Q. Chen, M. Willander, J. Carter, C. H. Thaki, and E. R. A. Evans, “Fabrication and performances of delta-doped Si n-MESFET grown by MBE,” Electron. Lett., vol. 29, no. 8, p. 671, 1993.
[3.36] R. G. Biswas, N. L. Mattey, P. J. Phillips, S. M. Newstead, T. E. Whall, S. Taylor, and A. Gundlach, “Silicon boron delta doped FET: Growth and fabrication,” Electron. Lett., vol. 28, no. 7, p. 667, 1992.
[3.37] S. L. Wu, T. K. Carns, S. J. Wang, and K. L. Wang, “Boron delta-doped Si metal semiconductor field-effect transistor grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 63, no. 10, p. 1363, 1993.
[3.38] M. J. Kao, H. M. Shieh, W. C. Hsu, T. Y. Lin, Y. H. Wu, and R. T. Hsu, “Investigation of the electron transfer characteristics in multi--doped GaAs FET’s,” IEEE Trans. Electron Devices, vol. 43, no. 8, p. 1181, 1996.
[4.1] S. Ogura, C. F. Codella, N. Rovedo, J. F. Shepard, and J. Riseman, “A half micron MOSFET using double implanted LDD,” in IEDM Tech. Dig., 1982, p. 718.
[4.2] P. W. Li, E. S. Yang, Y. F. Yandg, J. O. Chu, and B. S. Meyerson, “SiGe pMOSFET’s with gate oxide fabricated by microwave electron cyclotron resonance plasma processing,” IEEE Electron Device Lett., vol. 15, no. 10, p. 402, 1994.
[4.3] I. S. Goh, J. F. Zhang, S. Hall, W. Eccleston, and K. Werner, “Electrical properties of plasma-grown oxide on MBE-grown SiGe,” Semicond. Sci. Technol., vol. 10, no. 6, p. 818, 1995.
[4.4] P. W. Li, H. K. Liou, E. S. Yang, S. S. Lyer, T. P. Smith III, and Z. Lu, “Formation of stoichiometric SiGe oxide by electron cyclotron resonance plasma,” Appl. Phys. Lett., vol. 60, no. 26, 29, p. 3265, 1992.
[4.5] Deepak K. Nayak, Ph. D. Dissertation, University of California Los Angeles, 1992.
[4.6] F. K. LeGoues, R. Rosenberg, T. Nguyen, J. Himpsel, and B. S. Meyerson, “Oxidation studied of SiGe,” J. Appl. Phys., vol. 65, no. 4, 15, p. 1724, 1989.
[4.7] P. W. Li, and E. S. Yang, “SiGe gate oxide prepared at low-temperatures in an electron cyclotron resonance plasma,” Appl. Phys. Lett., vol. 63, no. 21, 22, p. 2938, 1993.
[4.8] S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Trans. Electron Devices, vol. 31, no. 9, p. 1116, 1984.
[4.9] S. L. Wu, and S. J. Chang, “Si field-effect transistor with doping dipole in buffer layer,” Appl. Phys. Lett., vol. 75, no. 18, 1, p. 2848, 1999.
[4.10] K. Onodera, K. Nishimura, S. Aoyama, S. Sugitani, Y. Yamane, and M. Hirano, “Extremely low-noise performance of GaAs MESFETs with wide-head T-shaped gate,” IEEE Trans. Electron Devices, vol. 46, no. 2, p. 310, 1999.
[4.11] P. W. Chien, S. L. Wu, S. C. Lee, S. J. Chang, H. Miura, S. Koh, and Y. Shiraki, “P-type delta-doped SiGe/Si heterostructure field effect transistors,” Electron. Lett., vol. 38, no. 21, p. 1289, 2002.
[4.12] S. Vedronckt-Vandebroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, A. C. Megdanis, C. L. Stanis, A. A. Bright, G. M. Kroesen, and A. C. Warren, “High-mobility modulation-doped SiGe-channel p-MOSFETs,” IEEE Electron Device Lett., vol. 12, no. 8, p. 447, 1991.
[4.13] P. M. Garone, V. Venkataraman, and J. C. Sturm, “Hole mobility enhancement in MOS-gated GexSi1-x/Si heterostructure inversion layers,” IEEE Electron Device Lett., vol. 13, no. 1, p. 56, 1992.
[4.14] D. K. Nayak, J. C. S. Woo, G. K. Yabiku, K. P. MacWilliams, J. S. Park, and K. L. Wang, “High-mobility GeSi pMOS on SIMOX,” IEEE Electron Device Lett., vol. 14, no. 11, p. 520, 1993.
[4.15] M. Y. A. Yousif, O. Nur, O. Chretien, Y. Fu, and M. Willander, “Threshold voltage and charge control considerations in double quantum well Si/Si1-xGex p-type MOSFETs,” Solid-State Electron., vol. 42, no. 6, p. 951, 1998.
[4.16] B. R. Cyca, K. G. Robins, N. G. Tarr, D. X. Xu, J. –P. Noel, D. Landheer, and M. Simard-Normandin, “Hole confinement and mobility in heterostructure Si/Ge/Si p-channel metal–oxide–semiconductor field effect transistors,” J. Appl. Phys., vol. 81, no. 12, 15, p. 8079, 1997.
[4.17] S. J. Mathew, G. Niu, W. B. Dubbelday, J. D. Cressler, J. A. Ott, J. O. Chu, P. M. Mooney, K. L. Kavanagh, B. S. Meyerson, and I. Lagnado, “Hole confinement and its impact on low-frequency noise in SiGe pFETs on sapphire,” in IEDM Tech. Dig., 1997, p. 815.
[5.1] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 7, p. 1406, 2000.
[5.2] N. Sugii, K. Nakagawa, S. Yamaguchi, and M. Miyao, “Role of Si1-xGex buffer layer on mobility enhancement in a strained-Si n-channel metal-oxide-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 75, no. 19, 8, p. 2948, 1999.
[5.3] Y. P. Wang, S. L. Wu, and S. J. Chang, “Investigation of transport mechanism for strained Si nMOSFET grown on multi-layer substrate”, Jpn. J. Appl. Phys., vol. 44, no. 51, p. L1560, 2005.
[5.4] C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-Si device application,” in VLSI Symp. Tech. Dig., 2004, p. 56.
[5.5] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. A. S. Koyama, S. Kuroki, N. Ikezawa, T. Saitoh, and T. Horiuchi, “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design,” in IEDM Tech. Dig., 2000, p. 247.
[5.6] S. L. Wu, “SiGe -channel field-effect transistors on SIMOX substrates,” Semicond. Sci. Technol., vol. 20, no. 6, p. 559, 2005.
[5.7] Z. Shi, D. Onsongo, and S. K. Banerjee, “Mobility and performance enhancement in compressively strained SiGe channel pMOSFETs,” Appl. Surf. Sci., vol. 224, no. 1-4, p. 248, 2004.
[5.8] J. Jung, C. N. Chleirigh, S. Yu, O. O. Olubuyide, J. Hoyt, and D. A. Antoniadis, “Tradeoff between mobility and subthreshold characteristics in dual-channel heterostructure n- and p-MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 8, p. 562, 2004.
[5.9] J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, “Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x<y) virtual substrate,” IEEE Electron Device Lett., vol. 24, no. 7, p. 460, 2003.
[5.10] A. Shimizu, K. Hachimine, N. Ohki, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement,” in IEDM Tech. Dig., 2001, p. 433.
[5.11] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node,” in VLSI Symp. Tech. Dig., 2004, p. 54.
[5.12] C. H. Ge, C. C. Lin, C. H. Ko, C. C. Huang, Y. C. Huang, B. W. Chan, B. C. Perng, C. C. Sheu, P. Y. Tsai, L. G. Yao, C. L. Wu, T. L. Lee, C. J. Chen, C. T. Wang, S. C. Lin, Y. C. Yeo, and C. Hu, “Process-strained Si (PSS) CMOS technology featuring 3D strain engineering,” in IEDM Tech. Dig., 2003, p. 73.
[5.13] S. W. Lee, P. S. Chen, M. J. Tsai, C. T. Chia, C. W. Liu, and L. J. Chen, “The growth of high-quality SiGe films with an intermediate Si layer,” Thin Solid Films, vol. 447-448, p. 302, 2004.
[6.1] Y. Miura, and Y. Matukura, “Investiation of silicon-silicon dioxide interface using MOS structure,” Jpn. J. Appl. Phys., vol. 5, p. 180, 1966.
[6.2] A. Goetzberger, and H. E. Nigh, “Surface charge after annealing of Al–SiO2–Si structures under bias,” Proc. IEEE, vol. 54, no. 10, p. 1454, 1966.
[6.3] A. Goetzberger, A. D. Lopez, and R. J. Strain, “On the formation of surface states during stress aging of thermal Si–SiO2 interfaces,” J. Electrochem. Soc., vol. 120, p. 90, 1973.
[6.4] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967.
[6.5] S. F. Hofstein, “Stabilization of MOS devices,” Solid-State Electron., vol. 10, p. 657, 1967.
[6.7] K. O. Jeppson, and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MOS devices,” J. Appl. Phys., vol. 48, no. 5, p. 2004, 1977.
[6.8] S. Chakravarthi, A. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan, “A comprehensive framework for predictive modeling of negative bias temperature instability,” Proceedings of the International Reliability Physics Symposium, 2002, p. 273.
[6.9] M. Alam, “A critical examination of the mechanics of dynamic NBTI for p-MOSFETs,” in IEDM Tech. Dig., 2003, p. 345.
[6.10] S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese, and D. Saha, “Negative bias temperature instability in CMOS devices,” Microelectron. Eng., vol. 80, p. 114, 2005.