簡易檢索 / 詳目顯示

研究生: 施超獻
Shih, Chao-Sian
論文名稱: 輪椅後輪傾角對肩關節的肌肉力學影響
The effect of camber on shoulder muscle force in wheelchair propulsion
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 64
中文關鍵詞: 肌肉骨骼模型輪椅輪椅後輪傾角肌肉力量
外文關鍵詞: wheelchair, muscle force, musculoskeletal model, camber
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    輪椅是目前脊髓損傷患者最常使用的代步工具,但是長時間使用手動輪椅容易造成上肢,尤其是肩關節的損傷,近年來殘障輪椅運動的風氣日益興盛,而輪椅後輪傾角,是運動輪椅的主要機構設計之一,但是目前相關的研究中,並沒有指出究竟輪椅後輪傾角會對我們上肢的肌肉施力產生何種影響,所以本篇研究主要的目的是改變輪椅後輪傾角,並且利用模擬的方法分析於不同的後輪傾角以及推進速度下,肩關節各個肌肉的作用力,藉此來探討輪椅後輪傾角對上肢所造成的影響。
    本篇研究共有12位健康並且沒有使用輪椅經驗的受測者,利用動作分析系統擷取受測者之運動學資料,並用裝有測力計的輪圈收取動力學資料,再利用肩關節三維肌肉骨骼系統計算出13條肌肉的施力情形。本實驗所調整的後輪傾角分別為0˚、9˚、15˚,輪椅推動的速度控制在平均1m/s和2m/s,再分別對於速度和後輪傾角兩種變數進行分析比較。
    實驗結果顯示,當輪椅推進速度增加時,推進期主要的作用肌群之作用時間加長以及作用力增加,在不同的後輪傾角下肌肉作用的型態不論是推進期或是恢復期都不會改變,改變的是肌肉的出力大小,其中前三角肌會隨著輪椅後輪傾角增加而增加出力,而胸大肌、肩胛下肌、小圓肌、棘下肌以及二頭肌在角度為9˚的時候出力最小。根據本研究可以提供輪椅使用者和設計者於選擇及設計輪椅時參考的依據,在推進效率及輪椅阻力之間找一個最佳化的平衡點。

    Wheelchair is the most common device for individuals with spinal cord injury. It is very easy to make the upper extremity get hurt especially shoulder joint when long term using. The camber of the rear wheel is a common characteristic in sports wheelchair, and it is an important factor in wheelchair propulsion. However, the effect of camber on muscle forces of upper extremities hasn’t been studied in previous studies. The object of this research is to exam the effects of camber on shoulder muscle forces using simulation method to analysis the muscle force in different kinds of camber angle.
    Twelve healthy subjects, who are unexperience wheelchair users, participated in this study. We use motion capture system to collect the kinematics data. An instrumented wheel with load cell was used to collect the force data. A previously built three dimensional shoulder musculoskeletal model was to calculate muscle forces of thirteen muscles around shoulder joint. In this research, participants were asked to propel wheelchair with 0˚, 9˚, and 15˚ rear wheel camber. Control the average wheelchair propulsion speed in 1m/s and 2m/s.
    The results indicated that when the speed increase, the activation of the muscle groups activating during propulsion phase increase and maximum muscle force also became larger. Muscle activation pattern did not change with different camber angle. Anterior deltoid had greater muscle force when we increase camber angle. The other usually have minimum in 9˚ or have no significant difference. By the research, we also can provide some information to the wheelchair user and designer. Help them to find some optimal balance between the wheelchair resistance and fraction of effective force.

    中文摘要 I Abstract III 誌謝 V Contents VI List of Tables IX List of Figures XI Chapter 1 1 Introduction 1 1.1 Background 1 1.2 Prevalence of injury 1 1.3 Effects of wheelchair Parameters 2 1.4 Kinematics 4 1.5 Kinetics 5 1.6 Camber 6 1.7 Musculoskeletal model 8 1.8 Motivation and purpose 10 Chapter 2 12 Materials and methods 12 2.1 Subjects 12 2.2 Experimental Equipment 13 2.2.1 Manual Handrim Wheelchair 13 2.2.2 Instrumental Wheel 14 2.2.3 Motion Analysis System 14 2.3 Research Method 15 2.3.1 Marker set 15 2.3.2 Definition of the Coordination 16 2.3.3 Kinematical model of the upper extremity 18 2.3.4 Muscle model of the shoulder joint 20 2.3.5 Kinetic Model of the Upper Extremity 23 2.3.6 Muscle Force Analysis 24 2.4 Experimental Procedures 26 2.5 Analysis Procedures 27 Chapter 3 28 Result 28 3.1 Muscle Activation Profiles 28 3.2 Time parameter 31 3.2.1 Slow speed (1m/s) 32 3.2.2 Fast speed (2m/s) 37 3.3 Muscle force analysis 42 3.3.1 Comparing different speeds 42 3.3.2 Comparing different cambers 43 Chapter 4 48 Discussion 48 4.1 Muscle force pattern 48 4.2 Time parameter 51 4.3 Muscle force analysis 54 4.3.1 Comparing different speeds 54 4.3.2 Comparing different cambers 58 Chapter 5 60 Conclusion 60 5.1 Conclusion of this study 60 5.2 Limitations 61 5.3 Future studies 61 Reference 62

    1. Anderson, F. C. and M. G. Pandy. "A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions." Computer Methods in Biomechanics and Biomedical Engineering 2(3): 201-231, (1999).
    2. Asato, K. T., R. A. Cooper, et al. "SMARTWheels: development and testing of a system for measuring manual wheelchair propulsion dynamics." IEEE Trans Biomed Eng. 40(12): 1320-4. (1993).
    3. Chow, J. W., T. A. Millikan, et al. "Biomechanical comparison of two racing wheelchair propulsion techniques." Med Sci Sports Exerc. 33(3): 476-484. (2001).
    4. Davis, J. L. and E. S. Growney. "Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: A technical." Journal of Rehabilitation Research & Development 35(1): 61. (1998).
    5. Faupin, A., P. Campillo, et al. "The effects of rear-wheel camber on the mechanical parameters produced during the wheelchair sprinting of handibasketball athletes." J Rehabil Res Dev. 41(3B): 421-8. (2004).
    6. Fukunaga, T., R. Roy, et al. "Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging." J Orthop Res. 10(6): 928-34. (1992).
    7. Fung, M., S. Kato, et al. "Scapular and clavicular kinematics during humeral elevation: A study with cadavers." Journal of Shoulder and Elbow Surgery 10(3): 278-285. (2001).
    8. Gellman, H., I. Sie, et al. "Late complications of the weight-bearing upper extremity in the paraplegic patient." Clin Orthop Relat Res. Aug(223): 132-5. (1988).
    9. Huang, Y. C.. "The effect of handrim diameter on biomechanics of upper extremity in wheelchair propulsion." National Cheng Kung University: Taiwan (1999).
    10. Karlsson, D. and B. Peterson. "Towards a model for force predictions in the human shoulder." J Biomech. 25(2): 189-99. (1992).
    11. Kotajarvi, B. R., M. B. Sabick, et al. "The effect of seat position on wheelchair propulsion biomechanics." J Rehabil Res Dev. 41(3B): 403-14. (2004).
    12. Lin, H. T., F. C. Su, et al. "Muscle forces analysis in the shoulder mechanism during wheelchair propulsion." Proc Inst Mech Eng [H]. 218(4): 213-21. (2004).
    13. Lin, H. T. "Biomechanical modeling and dynamic graphic simulation for the suoulder using Visual Interactive Musculoskeletal System (VIMS)." National Cheng Kung University: Taiwan (2005).
    14. Morrow, L. Y. Guo, et al. "A 2-D model of wheelchair propulsion." Disability & Rehabilitation 25(4/5): 192. (2003).
    15. Mukherjee, G. and A. Samanta. "Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems." Journal of Rehabilitation Research & Development 38(4): 391-399. (2001).
    16. Mulroy, S. J., S. Farrokhi, et al. "Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study." Archives of Physical Medicine and Rehabilitation 85(6): 925-934. (2004).
    17. Newsam, C. J., S. S. Rao, et al. "Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury." Gait & Posture 10(3): 223-232. (1999).
    18. Nichols, P., P. Norman, et al. "Wheelchair user's shoulder? Shoulder pain in patients with spinal cord lesions." Scand J Rehabil Med. 11(1): 29-32. (1979).
    19. Pentland, W. and L. Twomey. "The weight-bearing upper extremity in women with long term paraplegia." Paraplegia 29(8): 521-30. (1991).
    20. Poppen, N. K. and P. S. Walker. "Normal and abnormal motion of the shoulder." J Bone Joint Surg Am. 58(2): 195-201. (1976).
    21. Richter, W. M., R. Rodriguez, et al. "Stroke Pattern and Handrim Biomechanics for Level and Uphill Wheelchair Propulsion at Self-Selected Speeds." Archives of Physical Medicine and Rehabilitation 88(1): 81-87. (2007).
    22. Tomlinson, J. D. "Managing Maneuverability and Rear Stability of Adjustable Manual Wheelchairs: An Update." PHYS THER 80(9): 904-911. (2000).
    23. Tsai, C. Y. "The effects of camber on biomechanics of upper extremity in wheelchair propulsion." National Cheng Kung University: Taiwan (2007).
    24. van der Helm, F. C. "A finite element musculoskeletal model of the shoulder mechanism." J Biomech. 27(5): 551-69. (1994).
    25. van der Woude LH, Veeger HE, et al. "Wheelchair racing: effects of rim diameter and speed on physiology and technique." Med Sci Sports Exerc. 20(5): 492-500. (1988).
    26. Veeger, D., L. H. van der Woude, et al. "The effect of rear wheel camber in manual wheelchair propulsion." J Rehabil Res Dev. 26(2): 37-46. (1989).
    27. Wood, J. E., S. G. Meek, et al. "Quantitation of human shoulder anatomy for prosthetic arm control--II. Anatomy matrices." J Biomech. 22(4): 309-25. (1989).
    28. Wu, H. W. "Biomechanics in upper extremity during wheelchair propulsion." National Cheng Kung University: Taiwan (1997).
    29. Wu, H. W., L. J. Berglund, et al. "An instrumented wheel for kinetic analysis of wheelchair propulsion." J Biomech Eng. 120(4): 533-5. (1998).
    30. Xiang, H., A. M. Chany, et al. "Wheelchair related injuries treated in US emergency departments." Inj Prev 12(1): 8-11. (2006).
    31. Yeh, H. C. "The effect of handrim size on shoulder biomechamics in wheelchair propulsion." National Cheng Kung University: Taiwan (2005).
    32. Zajac, F. E. "Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control." Crit Rev Biomed Eng. 17(4): 359-411. (1989).

    下載圖示 校內:立即公開
    校外:2008-08-22公開
    QR CODE