| 研究生: |
卓冠宏 Cho, Kuan-Hung |
|---|---|
| 論文名稱: |
CdSe/ZnS量子點複合膜之製備 Preparation of CdSe/ZnS Quantum Dots-Containing Composite Films |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 聚乙烯亞胺 、電泳沉積 、逐層自組裝 、量子點 、複合膜 |
| 外文關鍵詞: | polyethyleneimine, electrophoretic deposition, layer-by-layer self assembly, quantum dots, composite films |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關量子點複合膜的製備與特性分析,內容分為逐層自組裝量子點複合膜與電泳輔助沉積構成量子點複合膜兩部份。首先製備CdSe/ZnS量子點,經丙硫醇酸(mercaptopropionic acd ,MPA)表面改質後在其表面被覆聚乙烯亞胺(polyethyleneimine,PEI),並利用TEM以及EDX等儀器對粒子之結構、組成及特性分析作探討,以UV/Vis及PL來探討其光學性質的變化。第一部分為在ITO透明導電玻璃上以矽烷改質,利用逐層自組裝技術,製成量子點的多層複合膜。另ㄧ部分為利用電場作用力電泳輔助沉積構成量子點複合膜的製備。這兩部份以UV/Vis及PL來探討其光學性質的變化,並以掃描式電子顯微鏡來觀察其表面結構。
關於逐層自組裝量子點複合膜部份,利用矽烷APTMS將ITO透明導電玻璃改質之後,將量子點自組裝於其上,並使用聚電解質吸附製得複合膜。建立適當的自組裝條件,並探討薄膜的光學性質。
關於電泳輔助沉積構成量子點複合膜部份,利用電場作用將表面帶正電聚電解質被覆的量子點沉積在陰極ITO透明導電玻璃上。複合膜的光學性質可經由改變操作變因而得到良好的控制。最後利用二甲基氨基丙基-3乙基碳二亞胺鹽酸鹽(1-3-dimethyl-aminopropyl-3-
ethylcarbodiimidehydrochloride,EDC)架橋劑表面架橋處理電泳沉積輔助構成量子點複合膜。本研究探討不同施加電壓與不同沉積時間下光學性質的影響。
The aim of this thesis is the preparation and characterization of quantum dots-containing composite films. The thesis involves two parts: (1) layer-by-layer self-assembled of quantum dots-containing composite films on ITO, and (2) electrophoretical deposition-assisted formation of quantum dots-containing composite films on ITO. First, CdSe/ZnS quantum dots were prepared, then coated by polyethyleneimine (PEI) after surface modification with mercaptopropionic acid (MPA). Their structure, composition, and property were investigated by TEM and EDX. The optical property and surface morphology of the quantum dots were characterized by UV/VIS absorption spectra and PL Emission spectra. For the first one, the quantum dots-containing composite films were formed on the silanized ITO glasses by layer-by-layer self-assembled technique. For the second one, quantum dots-containing composite films were fabricated by electrophoretical deposition. The optical property and surface morphology of the resultant composite films were characterized by UV/VIS absorption spectra, PL Emission spectra, and SEM.
The monolayer or multilayers of quantum dots were fabricated on APTMS-modified ITO glass by layer-by-layer self-assemble technique. The composite films were obtained via polyelectrolyte interaction. The deposition and self-assembly conditions were established, and the optical property of the composite films were also investigated.
Electrophoretical deposition-assisted formation of quantum dots- containing composite films were obtained on the cathode of ITO glass with surface polycation coatings of CdSe/ZnS quantum dots by electrical field. The optical property of composite films could be well controlled by varying the operation conditions such as the applied voltages and deposition time. Finally, the composite films were crosslinked by using 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC). The effects of different deposition time and deposition voltage on the optical property of composite films were investigated.
1. G. M. Schmid, In:K. J. Klabunde (ed), Nanoscale Materials in Chemistry, NY, Wiley, p.15 (2001).
2. M. Green, P. O’Brien, Chem. Commun., 22, 2235 (1999).
3. T. Takagahara, K. Takeda, Phys. Rev. B, 46, 15578 (1992).
4. D. J. Norris, A. Sacra, C. B. Murray, M. G. Bawendi, Phys. Rev. Lett., 72, 2612 (1994).
5. W. Hoheisel, V. L. Colvin, C. S. Johnson, A. P. Alivisatos, J. Chem. Phys., 101, 8455 (1994).
6. M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996).
7. K. Song, S. Lee, Curr. Appl. Phys., 1, 169 (2001).
8. H. Okuyama, K. Nakono, T. Miyajima and K. Akimoto., JPn. J. Appl.Physics., 30 , L1620 (1991)
9. X. Peng, M. C. Schlamp, A. V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997).
10. M. Han, X. Gao, J. Z. Su, S. Nie, Nat. Biotechnol., 19, 631 (2001).
11. X. Zhong, R. Xie, Y. Zhang, T. Basché, W. Knoll, Chem. Mater., 17, 4038 (2005).
12. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).
13. Z. A. Peng, X. G. Peng, J. Am. Chem. Soc., 123, 183 (2001).
14. L. Qu, A. Peng, X. G Peng, Nano Lett., 1, 333 (2001).
15. M. A. Vairavamurthy, W. S. Goldenberg, S. Ouyang, S. Khalid, Mar. Chem., 70, 181 (2000).
16. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, J. Am. Chem. Soc. , 110, 3046 (1988).
17. S. H. Yu, Y. S. Wang, J. Yang, Z. H. Han, Y. Xie, Y. T. Qian, X. M. Liu, Chem. Mater., 10, 2309 (1998).
18. M. J. Murcia, C. A. Naumann, In: C. Kumar (ed), Biofunctionalization of Nanomaterials, Wiley-VCH, Weinheim, p.1 (2005).
19. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B., 101, 9463 (1997).
20. M. Danek, K. F. Jensen, M. G. Bawendi, Chem. Mater., 8, 173 (1996).
21. J. W. Haus, J. Phys. Chem., 97, 895 (1993).
22. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi, J. H. Fendler, J. Phys. Chem., 100, 8927 (1996).
23. P. R. Kratzert, J. Puls, M. Rabe, F. Henneberger, Appl. Phys. Lett., 79, 2814 (2001).
24. O. L. Mićić, J.R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem., 99, 7754 (1995).
25. O. L. Mićić, C. J. Curtis, K. M. Jones, J. R. Sprague, A. J. Nozik, J. Phys. Chem., 98, 4966 (1994).
26. C. S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, G. R. Delgado, J. Am. Chem. Soc., 121, 5191 (1999).
27. K. A. Pettigrew, Q. Liu, P. P. Power, S. M. Kauzlarich, Chem. Mater., 15, 4005 (2003).
28. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science., 295, 2425 (2002).
29. A. Y. Nazzal, L. Qu, X. Peng, M. Xiao, Nano Lett., 3, 819 (2003).
30. S. Coe, W. K. Woo, M. Bawendi, V. Bulović, Nature, 420, 800 (2002).
31. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nature Biotechnol., 22, 969 (2004).
32. W. C. W. Chan, S. Nie, Science, 281, 2016 (1998).
33. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science, 281, 2013 (1998).
34. S. Jaffar, K. T. Nam, A. Khademhosseini, J. Xing, R. S. Langer, A. M. Belcher, Nano Lett., 4, 1424 (2004).
35. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nature Mater., 4, 435 (2005).
36. A. A. Mamedov and N. A. Kotov, Langmuir, 16, 5530 (2000).
37. N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, and L. M. Liz-Marzán, Langmuir, 18, 3694 (2000).
38. K. Lowack and C. A. Helm, Marcomolecules, 31, 823 (1998).
39. X. L. Li, W. Q. Xu, J. H. Zhang, H. Y. Jia, B. Yang, B. Zhao, B. F. Li, and Y. Ozaki, Langmuir, 20, 1298 (2004).
40. D. S. Salloum and J. B. Schlenoff, Biomacromolecules, 5, 1089 (2004)
41. S. Jaffar, K. T. Nam, A. Khademhosseini, J. Xing, R. S. Langer, and A. M. Belcher, Nano Lett., Vol. 4, No. 8, 1421-1425 (2004)
42. T. Hyeon, ,Chem.Commun., 927. (2003)
43. V. T. Dmitri, L. R. Andrey, A. Kornowski, M. Haase, and H. Weller. Nano Lett., Vol. 1, No. 4, (2001)
44. S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner, and C. S. Yun, Chem. Mater.,14, 4, 1576 (2002)
45. X. Peng, M. C. Schlamp, A. V. Kadavanich, and P. Alivisatos, J. Am. Chem. Soc., 119, 7019 (1997)
46. G. Kickelbick, Liz-Marzán, L. M. In:H. S. Nalwa, ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, 4, pp.199-220(2004).
47. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B., 101,9463 (1997).
48. M. Danek, K. F.Jensen, M. G. Bawendi, Chem. Mater.,8, 173 (1996).
49. N. Revaprasadu, M. A. Malik, P. O’Brien, G.Wakefield, Chem. Commun., 1573 (1999).
50. F. C. Hoener, K. A. Allan, A. J. Bard, A. Campion, A. M. Fox, T. E.Mallouk. S. E. Webber, J. M.White,. J.Phys.Chem., 96, 3812 (1992).
51. M. A.Malik, P. O’Brien, N. Revaprasadu, Chem. Mater., 14, (2004).
52. H. Kim, M. Achermann, L. P. Balet, J. A. Hollingsworth, and V. I. Klimov,J. AM. CHEM. SOC., 127, 544 (2005).
53. (a) G. A. Ozin, Adv. Mater., 4, 612 (1992). (b) R. W. Cahn, Nature, 359, 591 (1992). (c) G. A. Ozin, Science, 271,920 (1996).
54. (a) C. Hayashi, Phys. Today, 40, 44 (1987). (b) H. Gleiter, Prog. Mater. Sci., 33, 223 (1989).
55. (a) J. H. Fendler, Chem. Rev., 87, 877 (1987). (b) A. Henglein, Chem. Rev., 89, 1861 (1989). (c) G. Schimid, Clusters and Colloids: From Theory to Application; VCH, (1994).
56. C. N. R. Rao and A. K. Cheetham, J. Mater. Chem., 11, 2887 (2001).
57. V. Provenzano, R. L. Holtz, Mater. Sci. Eng., A204, 125 (1995).
58. G. D. Qian, M.Q. Wang, J. Phys. Chem. Solids, 58(3), 375 (1997).
59. A. Basumalick, K. Biswas, S. Mukherjee, and G. C. Das, Mater. Lett., 30, 363 (1997)
60. D. Vollath, D. Vinga Szabó and J. Hauβelt, J. Euro. Ceram. Soc., 17, 1317 (1997).
61. K. J. Burnam, J. P. Carpenter, C. M. Lukehart, S. B. Milne, S. R. Stock, B. D. Jones, R. Glosser, and J. E. Wittig, Nanostructured Mater., 5(2), 155 (1995).
62. S. Maeda, and S. P Armes, Synth. Metals, 69, 499 (1995).
63. B. E. Koene and L. F. Nazar, Solid State Ion., 89, 147 (1996).
64. J. P. Lemmon and M. M. Lerner, Solid State Comm., 94(7), 533 (1995).
65. G. González, M. A. Santa Ana and E. Benavente, J. Phys. Chem. Solids, 58(9), 1457 (1997).
66. Y. Chen, H. L. W. Chan and C. L. Choy, Thin Solid Films, 323, 270 (1998).
67. G. R. Goward, F. Leroux and L. F. Nazar, Electrochimica Acta, 43, 1307 (1998).
68. G. González, M. A. Santa Ana and E. Benavente, Electrochimica Acta, 43, 1327 (1998).
69. Y. D. Yin, X. L. Xu, X. W. Ge and Z. C. Zhang, Radiation Phys. Chem., 53, 567 (1998).
70. C. B. Ng, L. S. Schadler and R. W. Siegel, Nanostructured Mater., 12, 507 (1999).
71. A. S. Best, A. Ferry, D. R. MacFarlane and M. Forsyth, Solid State Ion., 126, 269 (1999).
72. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, J. Mater. Sci., 34, 3859 (1999).;Adv. Mater., 11(3), 223 (1999)
73. K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez and M. J. Yacaman, Nanostructured Mater., 7(3), 293 (1996).
74. K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez and M. J. Yacaman, ACS Symp. Ser. 622, 151 (1996).
75. C. B. Ng, L. S. Schadler and R. W. Siegel, Nanostructured Mater., 12, 507 (1999).
76. H. S. Zhou, T. Wada, H. Sasabe and H. Komiyama, Synth. Metals., 81, 129 (1996).
77. S. S. Ray, and M. Biswas, Mater. Res. Bull., 33(4), 533 (1998).
78. Y. J. Zhu, Y. T. Qian, X. J. Li and M. W. Zhang, Nanostructured Mater., 10(4), 673 (1998).
79. N. A. Kotov, I. Dekany and J. H. Fendler, J. Phys. Chem., 99, 13065 (1995).
80. P. C. Hidber, W. Helbig, E. Kim and G. M. Whitesides, Langmuir, 12, 1375 (1996).
81. D. Bethell, M. Brust, D. J. Schiffrin and C. Kiel, J. Electroanal. Chem., 409, 137 (1996).
82. J. Tien, A. Terfort and G.. M. Whitesides, Langmuir, 13, 5349 (1997).
83. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature, 370, 354 (1994).
84. A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self-Assembly, Academic Press, San Diego, CA,(1991).
85. H.O. Finklea, in: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, Wiley, Chichester, (2000).
86. H.O. Finklea, in: A. Bard, I. Rubinstein (Eds.), Electroanalytical Chemistry, 19, Dekker, New York, (1996).
87. J. H. Fendler, Membrane-Mimetic Approach to Aduanced Materials;
Springer-Verlag: Berlin,; Advances in Polymer Science Series., Vol.113. (1994)
88. J. H. Fendler, F. C. Meldrum, N. A. Kotov, Langmuir., 10, 3797. (1994)
89. I. Langmuir, J. Am. Chem. Soc., 38, 2221. (1916)
90. K. B. Blodgett, J. Am. Chem. Soc., 56, 495 (1934)
91. R. K. Iler, J. Colloid Interface Sci., 21, 569. (1966)
92. G. Decher, J. D. Hong, Thin Solid Films., 210/211, 831. (1992)
93. J. H. Fendler, Chem. Mater., 13, 3196(2001)
94. 吳建成,樹狀高分子包覆鎳奈米粒子及逐層自組裝奈米結構複合膜之製備,國立成功大學化學工程研究所碩士論文(2003).
95. D. Bethell, M. Brust, D. J. Schiffrin, and C. Kiely, J. Electroanalytical Chem., 409, 137 (1996)
96. G. Decher, Science., 277, 1232 (1997)
97. M. Gao, B. Richter, S. Kirstein, and H. Mo1hwald, J. Phys. Chem. B., 102, 4096 (1998)
98. P. Schuetz and F. Caruso, Adv.Funct.mater., 13, 939(2003)