簡易檢索 / 詳目顯示

研究生: 李柏賢
Li, Po-Hsien
論文名稱: 三維晶圓堆疊高效能運算系統的晶圓匹配方法
Improving Yield of 3D Wafer-Level High-Performance Computing Chips by Wafer Matching
指導教授: 謝明得
Shieh, Ming-Der
共同指導教授: 吳誠文
Wu, Cheng-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 42
中文關鍵詞: 3D晶圓匹配方法3D封裝晶圓級晶片晶圓堆疊良率
外文關鍵詞: 3D Wafer-Matching Methodology, 3D Packaging, Wafer-Scale Chip, Wafer-on-Wafer Stacking, Yield
相關次數: 點閱:84下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年来,深度神經網路 (DNN) 算法已經成為人工智能 (AI) 計算的主流。人工智能運算需求的激增需要高性能的DNN演算法硬體加速器,例如,Cerebras的晶圆級引擎 (WSE)使用一整片的晶圓來創建世界上最大的晶圓級人工智能晶片。在這篇論文中,我們推測在未来,3D晶圓級高性能計算 (HPC) 系统將被開發出來,其中兩片晶圆 (2D晶片) 堆疊在一起,形成一個巨大的3D晶片,通過Through Silicon Via (TSV) 垂直連接。然而,為了讓這種3D晶片成為可能,我們必須在晶圓堆疊後维持晶片的良率。在最初的WSE晶片中,已經採用了冗餘修復方法来提高2D晶片的良率。在本文中,在2D冗餘修復方法的基礎上,我們提出了一種三维冗餘修復方法,該方法利用了一種新穎的晶圓匹配方法和測試修復流程。實驗结果表明,我們的晶圓匹配方法可以提高三維晶圓堆疊晶片的良率。

    In recent years, deep neural network (DNN) algorithms have become the mainstream of artificial intelligence (AI) computing. The burst in AI computing needs calls for high-performance hardware accelerators for DNN algorithms, e.g., the Wafer Scale Engine (WSE) from Cerebras uses the full wafer to create the world’s largest wafer-scale AI chip. In this paper, we conjecture that in the future, the 3D wafer-level high-performance computing (HPC) system will be developed, where two wafers (2D chips) are stacked to form a monstrous 3D chip, connected vertically by the through-silicon vias (TSVs). To make such 3D chips possible, however, we will have to maintain the yield of the chips after the wafers are stacked. In the original WSE chip, a redundancy repair scheme has already been adopted for improving the yield of the 2D chips. In this paper, on top of the 2D redundancy repair scheme, we propose a 3D redundancy repair scheme, which takes advantage of a novel wafer-matching method and a test and repair flow. Experimental results show that our wafer-matching method can improve the yield of the 3D wafer-level chips.

    CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Organization of the Thesis 2 CHAPTER 2 BACKGROUND 3 2.1 Introduction to Wafer-Scale High-Performance Computing System 3 2.2 2D Redundancy Repair Methodology 4 2.3 Near-Miss Relation 7 2.4 Intersection Relation 7 2.5 Previous Works Wafer-Matching Methodology 8 CHAPTER 3 PROPOSED METHOD 10 3.1 Wafer Map Preparation 13 3.2 Wafer-Matching Algorithm 14 3.3 Simulation Flow 18 CHAPTER 4 EXPERIMENTAL RESULTS 20 4.1 Stacking Yield of 3D Wafer-Level Chips 20 4.2 Stacking Yield for One-Side Redundancy Architecture 22 4.3 Stacking Yield for Opposite Redundancy Architecture 23 4.4 Stacking Yield for Orthogonal Redundancy Architecture 24 4.5 Comparison of Different Redundancy Architectures 25 CHAPTER 5 CONCLUSION AND FUTURE WORK 27 5.1 Discussion and Contribution 27 5.2 Future Work 27 REFERENCES 28 APPENDIX 30

    [1] Cerebras Systems, “Wafer-Scale Deep Learning,” Presentation at 2019 IEEE Hot Chips 31 Symposium (HCS), Aug. 2019.
    [2] N. P. Jouppi, C. Young, N. Patil, et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit,” in Proc. 44th Annual Int. Symp. on Computer Architecture, pp. 1-12, June 2017.
    [3] K. Cho, I. Lee, H. Lim, and S. Kang, “Efficient Systolic-Array Redundancy Architecture for Offline/Online Repair,” Electronics, vol. 9, no. 2, pp. 338, Feb. 2020.
    [4] S. Y. Kung, S. N. Jean, and C. W. Chang. “Fault-Tolerant Array Processors Using Single-Track Switches,” IEEE Trans. Computers, vol.38, no.4, pp. 501-514, Jan. 1989.
    [5] I. Takanami, “Built-in Self-Reconfiguring Systems for Mesh-Connected Processor Arrays with Spares on Two Rows/Columns,” in Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 213-221, Oct. 2000.
    [6] M. Aoki, K. Hozawa and K. Takeda, “Wafer-Level Hybrid Bonding Technology with Copper/Polymer Co-Planarization,” in Proc. 2010 IEEE Int. 3D Systems Integration Conf. (3DIC), pp.1-4, Nov. 2010.
    [7] S. Reda, G. Smith, and L. Smith, “Maximizing the Functional Yield of Wafer-to-Wafer 3D Integration,” IEEE Trans. Very Large-Scale Integration (VLSI) Systems, vol.17, no. 9, pp. 1357-1362, Sept. 2009.
    [8] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, Mar. 1957.
    [9] A. Grinman, “The Hungarian Algorithm for Weighted Bipartite Graphs,” 18.434: Seminar in Theoretical Computer Science, Georgia Institute of Technology, Apr. 30, 2015.
    [10] A. Paths and F. Labelings, “Bipartite Matching & the Hungarian Method,” http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf. Aug. 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE