| 研究生: |
李柏賢 Li, Po-Hsien |
|---|---|
| 論文名稱: |
三維晶圓堆疊高效能運算系統的晶圓匹配方法 Improving Yield of 3D Wafer-Level High-Performance Computing Chips by Wafer Matching |
| 指導教授: |
謝明得
Shieh, Ming-Der |
| 共同指導教授: |
吳誠文
Wu, Cheng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 3D晶圓匹配方法 、3D封裝 、晶圓級晶片 、晶圓堆疊 、良率 |
| 外文關鍵詞: | 3D Wafer-Matching Methodology, 3D Packaging, Wafer-Scale Chip, Wafer-on-Wafer Stacking, Yield |
| 相關次數: | 點閱:84 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年来,深度神經網路 (DNN) 算法已經成為人工智能 (AI) 計算的主流。人工智能運算需求的激增需要高性能的DNN演算法硬體加速器,例如,Cerebras的晶圆級引擎 (WSE)使用一整片的晶圓來創建世界上最大的晶圓級人工智能晶片。在這篇論文中,我們推測在未来,3D晶圓級高性能計算 (HPC) 系统將被開發出來,其中兩片晶圆 (2D晶片) 堆疊在一起,形成一個巨大的3D晶片,通過Through Silicon Via (TSV) 垂直連接。然而,為了讓這種3D晶片成為可能,我們必須在晶圓堆疊後维持晶片的良率。在最初的WSE晶片中,已經採用了冗餘修復方法来提高2D晶片的良率。在本文中,在2D冗餘修復方法的基礎上,我們提出了一種三维冗餘修復方法,該方法利用了一種新穎的晶圓匹配方法和測試修復流程。實驗结果表明,我們的晶圓匹配方法可以提高三維晶圓堆疊晶片的良率。
In recent years, deep neural network (DNN) algorithms have become the mainstream of artificial intelligence (AI) computing. The burst in AI computing needs calls for high-performance hardware accelerators for DNN algorithms, e.g., the Wafer Scale Engine (WSE) from Cerebras uses the full wafer to create the world’s largest wafer-scale AI chip. In this paper, we conjecture that in the future, the 3D wafer-level high-performance computing (HPC) system will be developed, where two wafers (2D chips) are stacked to form a monstrous 3D chip, connected vertically by the through-silicon vias (TSVs). To make such 3D chips possible, however, we will have to maintain the yield of the chips after the wafers are stacked. In the original WSE chip, a redundancy repair scheme has already been adopted for improving the yield of the 2D chips. In this paper, on top of the 2D redundancy repair scheme, we propose a 3D redundancy repair scheme, which takes advantage of a novel wafer-matching method and a test and repair flow. Experimental results show that our wafer-matching method can improve the yield of the 3D wafer-level chips.
[1] Cerebras Systems, “Wafer-Scale Deep Learning,” Presentation at 2019 IEEE Hot Chips 31 Symposium (HCS), Aug. 2019.
[2] N. P. Jouppi, C. Young, N. Patil, et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit,” in Proc. 44th Annual Int. Symp. on Computer Architecture, pp. 1-12, June 2017.
[3] K. Cho, I. Lee, H. Lim, and S. Kang, “Efficient Systolic-Array Redundancy Architecture for Offline/Online Repair,” Electronics, vol. 9, no. 2, pp. 338, Feb. 2020.
[4] S. Y. Kung, S. N. Jean, and C. W. Chang. “Fault-Tolerant Array Processors Using Single-Track Switches,” IEEE Trans. Computers, vol.38, no.4, pp. 501-514, Jan. 1989.
[5] I. Takanami, “Built-in Self-Reconfiguring Systems for Mesh-Connected Processor Arrays with Spares on Two Rows/Columns,” in Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 213-221, Oct. 2000.
[6] M. Aoki, K. Hozawa and K. Takeda, “Wafer-Level Hybrid Bonding Technology with Copper/Polymer Co-Planarization,” in Proc. 2010 IEEE Int. 3D Systems Integration Conf. (3DIC), pp.1-4, Nov. 2010.
[7] S. Reda, G. Smith, and L. Smith, “Maximizing the Functional Yield of Wafer-to-Wafer 3D Integration,” IEEE Trans. Very Large-Scale Integration (VLSI) Systems, vol.17, no. 9, pp. 1357-1362, Sept. 2009.
[8] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, Mar. 1957.
[9] A. Grinman, “The Hungarian Algorithm for Weighted Bipartite Graphs,” 18.434: Seminar in Theoretical Computer Science, Georgia Institute of Technology, Apr. 30, 2015.
[10] A. Paths and F. Labelings, “Bipartite Matching & the Hungarian Method,” http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf. Aug. 2016.